Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9751
Título
On spaces of integrable functions associated to vector measures and limiting real interpolation
Publicado en
Journal of Mathematical Analysis and Applications. 2024, V. 540, n. 1, 128573
Editorial
Elsevier
Fecha de publicación
2024-12
ISSN
0022-247X
DOI
10.1016/j.jmaa.2024.128573
Resumo
We investigate which spaces are obtained when considering the limiting class of real interpolation spaces (0, q; J) for ordered Banach couples of spaces of (scalar) integrable functions with respect to a vector measure m, defined on a σ-algebra, with values in a Banach space. If m is in particular a finite positive scalar measure, previous known results are derived from ours. Furthermore, we study the interpolation of p-th power factorable operators by the extreme real interpolation method (1, q; K). We also deduce interpolation results for the (1, q; K)-method that apply to other related classes of operators to p-th power factorable operators, such as bidual (p, q)-power-concave operators and q-concave operators.
Palabras clave
Extreme interpolation spaces
Vector measures
Lorentz-Zygmund spaces
Optimal domain
p-th power factorable operators
Bidual (p, q)-power-concave operators
Materia
Análisis matemático
Mathematical analysis
Versión del editor
Aparece en las colecciones