Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Entre em contato
  • Deixe sua opinião
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosEsta coleçãoPor data do documentoAutoresTítulosAssuntos

    Minha conta

    EntrarCadastro

    Estatísticas

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • Ver item
    •   Página inicial
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • Ver item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9759

    Título
    Temporal forecasting of plant height and canopy diameter from RGB images using a CNN-based regression model for ornamental pepper plants (Capsicum spp.) growing under high-temperature stress
    Autor
    Ruiz González, RubénAutoridad UBU Orcid
    Nascimento, Antonia Maiara Marques doAutoridad UBU Orcid
    Santos, Marcos Bruno da Costa
    Porto, Rutten Kécio Soares de Brito
    Medeiros, Artur Mendes
    Santos, Fábio Sandro dos
    Martínez-Martínez, Víctor
    Barroso, Priscila Alves
    Publicado en
    Neural Computing and Applications. 2024,
    Editorial
    Springer
    Fecha de publicación
    2024
    ISSN
    0941-0643
    DOI
    10.1007/s00521-024-10502-w
    Resumo
    Being capable of accurately predicting morphological parameters of the plant weeks before achieving fruit maturation is of great importance in the production and selection of suitable ornamental pepper plants. The objective of this article is evaluating the feasibility and assessing the performance of CNN-based models using RGB images as input to forecast two morphological parameters: plant height and canopy diameter. To this end, four CNN-based models are proposed to predict these morphological parameters in four different scenarios: first, using as input a single image of the plant; second, using as input several images from different viewpoints of the plant acquired on the same date; third, using as input two images from two consecutive weeks; and fourth, using as input a set of images consisting of one image from each week up to the current date. The results show that it is possible to accurately predict both plant height and canopy diameter. The RMSE for a forecast performed 6 weeks in advance to the actual measurements was below 4.5 cm and 4.2 cm, respectively. When information from previous weeks is added to the model, better results can be achieved and as the prediction date gets closer to the assessment date the accuracy improves as well.
    Palabras clave
    Image-based temporal prediction
    Morphological parameters
    Ornamental potential
    Precision agriculture
    Solanaceae
    Thermal stress
    Materia
    Redes neuronales artificiales
    Neural networks (Computer science)
    Agricultura
    Agriculture
    URI
    http://hdl.handle.net/10259/9759
    Versión del editor
    https://doi.org/10.1007/s00521-024-10502-w
    Aparece en las colecciones
    • Untitled
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Arquivos deste item
    Nombre:
    Ruiz-cna_2024.pdf
    Tamaño:
    1.945Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar registro completo