Zur Kurzanzeige

dc.contributor.authorPacheco Bonrostro, Joaquín 
dc.contributor.authorCasado Yusta, Silvia 
dc.date.accessioned2024-12-20T12:19:21Z
dc.date.available2024-12-20T12:19:21Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/10259/9822
dc.description.abstractGiven an undirected graph, a clique is a subset of vertices in which the induced subgraph is complete; that is, all pairs of vertices of this subset are adjacent. Clique problems in graphs are very important due to their numerous applications. One of these problems is the clique partitioning problem (CPP), which consists of dividing the set of vertices of a graph into the smallest number of cliques possible. The CPP is an NP-hard problem with many application fields (timetabling, manufacturing, scheduling, telecommunications, etc.). Despite its great applicability, few recent studies have focused on proposing specific resolution methods for the CPP. This article presents a resolution method that combines multistart strategies with tabu search. The most novel characteristic of our method is that it allows unfeasible solutions to be visited, which facilitates exploration of the solution space. The computational tests show that our method performs better than previous methods proposed for this problem. In fact, our method strictly improves the results of these methods in most of the instances considered while requiring less computation time.en
dc.description.sponsorshipThis work was partially supported by FEDER funds and the Spanish State Research Agency (Projects PID2019-104263RB-C44 and PDC2021–121021-C22); the Regional Government of “Castilla y León”, Spain (Project BU071G19); the Regional Government of “Castilla y León”; and FEDER funds (Project BU056P20).en
dc.format.mimetypeapplication/vnd.openxmlformats-officedocument.wordprocessingml.document
dc.format.mimetypeapplication/zip
dc.format.mimetypetext/plain
dc.language.isoenges
dc.publisherUniversidad de Burgoses
dc.relation.isreferencedbyhttp://hdl.handle.net/10259/7402es
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectClique partitioning problemen
dc.subjectMetaheuristicsen
dc.subjectTabu searchen
dc.subjectMultistart methodsen
dc.subject.otherInvestigación operativaes
dc.subject.otherOperations researchen
dc.subject.otherModelos matemáticoses
dc.subject.otherMathematical modelsen
dc.titleDataset of the paper “A stepped tabu search method for the clique partitioning problem”. Applied Intelligence, 53, 16275-16292en
dc.typedatasetes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.identifier.doi10.36443/10259/9822
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104263RB-C44/ES/MEJORA EN LA TOMA DE DECISIONES EN EL AMBITO DE LA LOGISTICA Y PROBLEMAS RELACIONADOS. ENFOQUE MULTI-OBJETIVO/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PDC2021-121021-C22/ES/SISTEMAS DE APOYO A LA TOMA DE DECISIONES EFICIENTES: PLANIFICACION DE LA LOGISTICA EXTERNA E INTERNA Y SELECCION DE CARTERAS/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/Junta de Castilla y León//BU071G19//Métodos heurísticos para problemas de optimización de recursos sanitarios con varios objetivos/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/Junta de Castilla y León//BU056P20//Análisis de problemas de logística sanitaria: Enfoque multi-objetivo y uso de metaheurísticas/es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones
dc.publication.year2022


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige