Zur Kurzanzeige

dc.contributor.authorPacheco Bonrostro, Joaquín 
dc.contributor.authorCasado Yusta, Silvia 
dc.date.accessioned2024-12-20T12:20:08Z
dc.date.available2024-12-20T12:20:08Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/10259/9825
dc.description.abstractThe variable selection problem in the context of Linear Regression for large databases is analysed. The problem consists in selecting a small subset of independent variables that can perform the prediction task optimally. This problem has a wide range of applications. One important type of application is the design of composite indicators in various areas (sociology and economics, for example). Other important applications of variable selection in linear regression can be found in fields such as chemometrics, genetics, and climate prediction, among many others. For this problem, we propose a Branch & Bound method. This is an exact method and therefore guarantees optimal solutions. We also provide strategies that enable this method to be applied in very large databases (with hundreds of thousands of cases) in a moderate computation time. A series of computational experiments shows that our method performs well compared with well-known methods in the literature and with commercial software.en
dc.description.sponsorshipThis work was partially supported by FEDER funds and the Spanish Ministry of Economy and Competitiveness (Projects ECO2016-76567-C4-2-R and PID2019-104263RB-C44), the Regional Government of “Castilla y León”, Spain (Project BU329U14 and BU071G19), the Regional Government of “Castilla y León” and FEDER funds (Project BU062U16 and COV2000375).en
dc.format.mimetypeapplication/vnd.openxmlformats-officedocument.wordprocessingml.document
dc.format.mimetypeapplication/zip
dc.format.mimetypetext/plain
dc.language.isoenges
dc.publisherUniversidad de Burgoses
dc.relation.isreferencedbyhttp://hdl.handle.net/10259/8437es
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectVariable selectionen
dc.subjectLinear regressionen
dc.subjectBranch & Bound methodsen
dc.subjectHeuristicsen
dc.subject.otherInvestigación operativaes
dc.subject.otherOperations researchen
dc.subject.otherBases de datoses
dc.subject.otherDatabasesen
dc.titleDataset of the paper “Variable selection for linear regression in large databases: exact methods” Applied Intelligence, 51(6), 3736-3756en
dc.typedatasetes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.identifier.doi10.36443/10259/9825
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ECO2016-76567-C4-2-R/ES/BÚSQUEDA DE LA EFICIENCIA Y SOSTENIBILIDAD DE LAS DECISIONES PÚBLICAS: UN ENFOQUE MULTICRITERIO/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104263RB-C44/ES/MEJORA EN LA TOMA DE DECISIONES EN EL AMBITO DE LA LOGISTICA Y PROBLEMAS RELACIONADOS. ENFOQUE MULTI-OBJETIVO/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/Junta de Castilla y León//BU329U14//Diseño de técnicas metaheurísticas para la toma de decisiones problemas con múltiples objetivos. Aplicaciones a problemas relacionados con transporte público y recogida de residuos/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/Junta de Castilla y León//BU071G19//Métodos heurísticos para problemas de optimización de recursos sanitarios con varios objetivos/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/Junta de Castilla y León//BU062U16//Metaheurísticas e hiperheurísticas para problemas de transporte público con varios criterios. Aplicaciones a problemas logísticos relacionados/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/Junta de Castilla y León//COV2000375//Predicción y evolución de casos UCI: Aplicación a la provincia de Burgos/es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones
dc.publication.year2020


Dateien zu dieser Ressource

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige