Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos Q&C
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos Q&C
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9959

    Título
    PLS class modelling using error correction output code matrices, entropy and NIR spectroscopy to detect deficiencies in pastry doughs
    Autor
    Castro Reigía, David
    Ortiz Fernández, Mª CruzUBU authority Orcid
    Sanllorente Méndez, SilviaUBU authority Orcid
    García Esteban-Barcina, Iker
    Sarabia Peinador, Luis AntonioUBU authority Orcid
    Publicado en
    Chemometrics and Intelligent Laboratory Systems. 2024, V. 246, 105092
    Editorial
    Elsevier
    Fecha de publicación
    2024-03
    ISSN
    0169-7439
    DOI
    10.1016/j.chemolab.2024.105092
    Abstract
    Biscuits are a highly demanded product worldwide. Its success makes their manufacture process a challenging task, needing new strategies to maintain the high production levels and a high-quality standard. This is determined by two key processes: the kneading and the rolling. This manuscript aims to reflect the improvements that the application of a novel soft multiclass compliant classification method (PLS2-CM) entails regarding the traditional chemometric class modelling. With this new approach, the intention is to detect possible deficiencies in biscuit doughs (excess of water, lack of water or little kneading time) during both industrial processes by using NIR spectroscopy. In PLS2-CM, the coding of the classes is done using an Error Correcting Code Matrix (ECOC), which implies to employ several binary learners so that their number and structure are not predetermined beforehand but are function of the data set to be modelled. The optimization criterion in PLS2-CM is the sensitivity and specificity matrix evaluated by the Diagonal Modified Confusion Entropy (DMCEN), a new index inspired by the Shannon's entropy that is more sensitive to changes in the elements of that matrix than the usual total efficiency. The results obtained according to this index are better with this new soft classification method than the ones obtained when using other soft class modelling techniques such as soft independent modelling of class analogy (SIMCA) or unequal dispersed classes (UNEQ). In this work it is shown that it is possible to completely distinguish a correct kneaded dough from another defective one with a specificity equal to 1 during the kneading process, but the class corresponding with water deficit dough, accepts a very high percentage (80 % in training and 92 % in prediction) of the excess-water dough spectra. Despite that, after the fermentation and during the rolling process, the same doughs are modelled with complete sensitivity and specificity in prediction (100 %), which indicates that the physico-chemical changes produced during the fermentation are decisive to characterize the absence of defects in biscuit doughs kneading by NIR spectroscopy.
    Palabras clave
    Sensitivity and specificity
    DMCEN
    PLS2-Class modelling
    Process control
    Kneading
    Rolling
    Materia
    Química
    Chemistry
    Química analítica
    Chemistry, Analytic
    Alimentos
    Food
    Investigación operativa
    Operations research
    URI
    http://hdl.handle.net/10259/9959
    Versión del editor
    https://doi.org/10.1016/j.chemolab.2024.105092
    Collections
    • Artículos Q&C
    Atribución-NoComercial 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución-NoComercial 4.0 Internacional
    Files in this item
    Nombre:
    Castro-cils_2024.pdf
    Tamaño:
    1.842Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record