Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contactez-nous
  • Faire parvenir un commentaire
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout RIUBUCommunautés & CollectionsPar date de publicationAuteursTitresSujetsCette collectionPar date de publicationAuteursTitresSujets

    Mon compte

    Ouvrir une sessionS'inscrire

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de RIUBU
    • E-Prints
    • Untitled
    • Departamento de Construcciones Arquitectónicas e Ingenierías de la Construcción y del Terreno
    • Area de Construcciones Arquitectónicas
    • Untitled
    • Voir le document
    •   Accueil de RIUBU
    • E-Prints
    • Untitled
    • Departamento de Construcciones Arquitectónicas e Ingenierías de la Construcción y del Terreno
    • Area de Construcciones Arquitectónicas
    • Untitled
    • Voir le document

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/10060

    Título
    Object detection and tracking on UAV RGB videos for early extraction of grape phenotypic traits
    Autor
    Ariza Sentís, Mar
    Baja, Hilmy
    Vélez Martín, SergioAutoridad UBU Orcid
    Valente, João
    Publicado en
    Computers and Electronics in Agriculture. 2023, V. 211, p. 108051
    Editorial
    Elsevier
    Fecha de publicación
    2023-08
    ISSN
    0168-1699
    DOI
    10.1016/j.compag.2023.108051
    Résumé
    Grapevine phenotyping is the process of determining the physical properties (e.g., size, shape, and number) of grape bunches and berries. Grapevine phenotyping information provides valuable characteristics to monitor the sanitary status of the vine. Knowing the number and dimensions of bunches and berries at an early stage of development provides relevant information to the winegrowers about the yield to be harvested. However, the process of counting and measuring is usually done manually, which is laborious and time-consuming. Previous studies have attempted to implement bunch detection on red bunches in vineyards with leaf removal and surveys have been done using ground vehicles and handled cameras. However, Unmanned Aerial Vehicles (UAV) mounted with RGB cameras, along with computer vision techniques offer a cheap, robust, and timesaving alternative. Therefore, Multi-object tracking and segmentation (MOTS) is utilized in this study to determine the traits of individual white grape bunches and berries from RGB videos obtained from a UAV acquired over a commercial vineyard with a high density of leaves. To achieve this goal two datasets with labelled images and phenotyping measurements were created and made available in a public repository. PointTrack algorithm was used for detecting and tracking the grape bunches, and two instance segmentation algorithms - YOLACT and Spatial Embeddings - have been compared for finding the most suitable approach to detect berries. It was found that the detection performs adequately for cluster detection with a MODSA of 93.85. For tracking, the results were not sufficient when trained with 679 frames.This study provides an automated pipeline for the extraction of several grape phenotyping traits described by the International Organization of Vine and Wine (OIV) descriptors. The selected OIV descriptors are the bunch length, width, and shape (codes 202, 203, and 208, respectively) and the berry length, width, and shape (codes 220, 221, and 223, respectively). Lastly, the comparison regarding the number of detected berries per bunch indicated that Spatial Embeddings assessed berry counting more accurately (79.5%) than YOLACT (44.6%).
    Palabras clave
    Viticulture
    Instance segmentation
    MOTS
    PointTrack
    YOLACT
    Spatial Embeddings
    UAV
    Video
    Materia
    Agricultura
    Agriculture
    Viticultura
    Viticulture
    URI
    http://hdl.handle.net/10259/10060
    Versión del editor
    https://doi.org/10.1016/j.compag.2023.108051
    Aparece en las colecciones
    • Untitled
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Fichier(s) constituant ce document
    Nombre:
    Ariza-caeia_2023.pdf
    Tamaño:
    18.37Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Afficher la notice complète