Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/4794

    Título
    A view on Fuzzy Systems for big data: progress and opportunities
    Autor
    Fernández, Alberto .
    Carmona del Jesús, Cristóbal JoséUBU authority Orcid
    Jesus, María José del .
    Herrera, Francisco .
    Publicado en
    Publication Cover International Journal of Computational Intelligence Systems. 2016, V. 9, supl. 1, p. 69-80
    Editorial
    Atlantis Press
    Fecha de publicación
    2016-04
    ISSN
    1875-6891
    DOI
    10.1080/18756891.2016.1180820
    Abstract
    Currently, we are witnessing a growing trend in the study and application of problems in the framework of Big Data. This is mainly due to the great advantages which come from the knowledge extraction from a high volume of information. For this reason, we observe a migration of the standard Data Mining systems towards a new functional paradigm that allows at working with Big Data. By means of the MapReduce model and its different extensions, scalability can be successfully addressed, while maintaining a good fault tolerance during the execution of the algorithms. Among the different approaches used in Data Mining, those models based on fuzzy systems stand out for many applications. Among their advantages, we must stress the use of a representation close to the natural language. Additionally, they use an inference model that allows a good adaptation to different scenarios, especially those with a given degree of uncertainty. Despite the success of this type of systems, their migration to the Big Data environment in the different learning areas is at a preliminary stage yet. In this paper, we will carry out an overview of the main existing proposals on the topic, analyzing the design of these models. Additionally, we will discuss those problems related to the data distribution and parallelization of the current algorithms, and also its relationship with the fuzzy representation of the information. Finally, we will provide our view on the expectations for the future in this framework according to the design of those methods based on fuzzy sets, as well as the open challenges on the topic
    Palabras clave
    Big Data
    Fuzzy Rule Based Classification Systems,
    Clustering
    MapReduce
    Hadoop
    Spark
    Flink
    URI
    http://hdl.handle.net/10259/4794
    Versión del editor
    https://doi.org/10.1080/18756891.2016.1180820
    Collections
    • Artículos GICAP
    Attribution-NonCommercial 4.0 International
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial 4.0 International
    Files in this item
    Nombre:
    Fernandez-IJCIS-2016.pdf
    Tamaño:
    1.128Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record