Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contattaci
  • Manda Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto RIUBUArchivi & CollezioniData di pubblicazioneAutoriTitoliSoggettiQuesta CollezioneData di pubblicazioneAutoriTitoliSoggetti

    My Account

    LoginRegistrazione

    Statistiche

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • Mostra Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • Mostra Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7236

    Título
    Deepint.net: A Rapid Deployment Platform for Smart Territories
    Autor
    Corchado, Juan M.
    Chamoso, Pablo
    Hernández González, Guillermo
    San Román Gutiérrez, Agustín
    Rivas Camacho, Alberto
    González Briones, Alfonso
    Pinto Santos, Francisco
    Goyenechea, Enrique
    García Retuerta, David
    Alonso Miguel, María
    Bellido Hernández, Beatriz
    Valdeolmillos Villaverde, Diego
    Sánchez Verdejo, Manuel
    Plaza Martínez, Pablo
    López Pérez, Manuel
    Manzano García, Sergio
    Alonso Rincón, Ricardo S.
    Casado Vara, Roberto CarlosAutoridad UBU Orcid
    Prieto Tejedor, Javier
    Prieta, Fernando de la
    Rodríguez González, Sara
    Parra Domínguez, Javier
    Saberi Mohamad, Mohd
    Trabelsi, Saber
    Díaz Plaza, Enrique
    García Coria, José Alberto
    Yigitcanlar, Tan
    Novais, Paulo
    Omatu, Sigeru
    Publicado en
    Sensors. 2021, V. 21, n. 1, e236
    Editorial
    MDPI
    Fecha de publicación
    2021-01
    DOI
    10.3390/s21010236
    Abstract
    This paper presents an efficient cyberphysical platform for the smart management of smart territories. It is efficient because it facilitates the implementation of data acquisition and data management methods, as well as data representation and dashboard configuration. The platform allows for the use of any type of data source, ranging from the measurements of a multifunctional IoT sensing devices to relational and non-relational databases. It is also smart because it incorporates a complete artificial intelligence suit for data analysis; it includes techniques for data classification, clustering, forecasting, optimization, visualization, etc. It is also compatible with the edge computing concept, allowing for the distribution of intelligence and the use of intelligent sensors. The concept of smart cities is evolving and adapting to new applications; the trend to create intelligent neighbourhoods, districts or territories is becoming increasingly popular, as opposed to the previous approach of managing an entire megacity. In this paper, the platform is presented, and its architecture and functionalities are described. Moreover, its operation has been validated in a case study where the bike renting service of Paris—Vélib’ Métropole has been managed. This platform could enable smart territories to develop adapted knowledge management systems, adapt them to new requirements and to use multiple types of data, and execute efficient computational and artificial intelligence algorithms. The platform optimizes the decisions taken by human experts through explainable artificial intelligence models that obtain data from IoT sensors, databases, the Internet, etc. The global intelligence of the platform could potentially coordinate its decision-making processes with intelligent nodes installed in the edge, which would use the most advanced data processing techniques.
    Palabras clave
    Smart cities
    Smart cyberphysical platform
    Data analysis
    Data visualization
    Edge computing
    Artificial intelligence
    Bike renting
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/7236
    Versión del editor
    https://doi.org/10.3390/s21010236
    Aparece en las colecciones
    • Artículos GICAP
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Files in questo item
    Nombre:
    Casado-sensors_2021.pdf
    Tamaño:
    15.76Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri

    Métricas

    Citas

    Academic Search
    47
    CITATIONS
    47 total citations on Dimensions.
    47 Total citations
    17 Recent citations
    14 Field Citation Ratio
    0.18 Relative Citation Ratio
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostra tutti i dati dell'item