Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contactez-nous
  • Faire parvenir un commentaire
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout RIUBUCommunautés & CollectionsPar date de publicationAuteursTitresSujetsCette collectionPar date de publicationAuteursTitresSujets

    Mon compte

    Ouvrir une sessionS'inscrire

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de RIUBU
    • E-Prints
    • Untitled
    • Untitled
    • Artículos SWIFT
    • Voir le document
    •   Accueil de RIUBU
    • E-Prints
    • Untitled
    • Untitled
    • Artículos SWIFT
    • Voir le document

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7237

    Título
    Extension of PAR Models under Local All-Sky Conditions to Different Climatic Zones
    Autor
    García Rodríguez, AnaAutoridad UBU Orcid
    García Rodríguez, SolAutoridad UBU Orcid
    Granados López, DiegoAutoridad UBU Orcid
    Diez Mediavilla, MontserratAutoridad UBU Orcid
    Alonso Tristán, CristinaAutoridad UBU Orcid
    Publicado en
    Applied Sciences. 2022, V. 12, n. 5, 2372
    Editorial
    MDPI
    Fecha de publicación
    2022-03
    ISSN
    2076-3417
    DOI
    10.3390/app12052372
    Résumé
    Four models for predicting Photosynthetically Active Radiation (PAR) were obtained through MultiLinear Regression (MLR) and an Artificial Neural Network (ANN) based on 10 meteorological indices previously selected from a feature selection algorithm. One model was developed for all sky conditions and the other three for clear, partial, and overcast skies, using a sky classification based on the clearness index (kt). The experimental data were recorded in Burgos (Spain) at ten-minute intervals over 23 months between 2019 and 2021. Fits above 0.97 and Root Mean Square Error (RMSE) values below 7.5% were observed. The models developed for clear and overcast sky conditions yielded better results. Application of the models to the seven experimental ground stations that constitute the Surface Radiation Budget Network (SURFRAD) located in different Köppen climatic zones of the USA yielded fitted values higher than 0.98 and RMSE values less than 11% in all cases regardless of the sky type.
    Palabras clave
    Photosynthetically active radiation
    kt sky classification
    ANN
    Multilinear regression models
    Materia
    Electrotecnia
    Electrical engineering
    URI
    http://hdl.handle.net/10259/7237
    Versión del editor
    https://doi.org/10.3390/app12052372
    Aparece en las colecciones
    • Untitled
    • Untitled
    • Artículos SWIFT
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Fichier(s) constituant ce document
    Nombre:
    Garcia-as_2022.pdf
    Tamaño:
    3.751Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Afficher la notice complète