Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Kontakt
  • Feedback abschicken
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereiche & SammlungenErscheinungsdatumAutorenTitelnSchlagwortenDiese SammlungErscheinungsdatumAutorenTitelnSchlagworten

    Mein Benutzerkonto

    EinloggenRegistrieren

    Statistiken

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   RIUBU Startseite
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • Dokumentanzeige
    •   RIUBU Startseite
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • Dokumentanzeige

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7243

    Título
    Intrusion Detection with Unsupervised Techniques for Network Management Protocols over Smart Grids
    Autor
    Vega Vega, Rafael Alejandro
    Chamoso, Pablo
    González Briones, Alfonso
    Casteleiro-Roca, José-Luis
    Jove, Esteban
    Meizoso-López, María del Carmen
    Rodríguez-Gómez, Benigno Antonio
    Quintián, Héctor
    Herrero Cosío, ÁlvaroAutoridad UBU Orcid
    Matsui, Kenji
    Corchado, EmilioAutoridad UBU Orcid
    Calvo-Rolle, José Luis
    Publicado en
    Applied sciences. 2020, V. 10, n. 7, e2276
    Editorial
    MDPI
    Fecha de publicación
    2020-03
    DOI
    10.3390/app10072276
    Zusammenfassung
    The present research work focuses on overcoming cybersecurity problems in the Smart Grid. Smart Grids must have feasible data capture and communications infrastructure to be able to manage the huge amounts of data coming from sensors. To ensure the proper operation of next-generation electricity grids, the captured data must be reliable and protected against vulnerabilities and possible attacks. The contribution of this paper to the state of the art lies in the identification of cyberattacks that produce anomalous behaviour in network management protocols. A novel neural projectionist technique (Beta Hebbian Learning, BHL) has been employed to get a general visual representation of the traffic of a network, making it possible to identify any abnormal behaviours and patterns, indicative of a cyberattack. This novel approach has been validated on 3 different datasets, demonstrating the ability of BHL to detect different types of attacks, more effectively than other state-of-the-art methods.
    Palabras clave
    Smart grid
    Computational intelligence
    Automatic response
    Exploratory projection pursuit
    Neural network
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/7243
    Versión del editor
    https://doi.org/10.3390/app10072276
    Aparece en las colecciones
    • Artículos GICAP
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Dateien zu dieser Ressource
    Nombre:
    Herrero-as_2020.pdf
    Tamaño:
    629.8Kb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Zur Langanzeige