Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos SWIFT
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos SWIFT
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7273

    Título
    Photovoltaic Prediction Software: Evaluation with Real Data from Northern Spain
    Autor
    González Peña, DavidUBU authority Orcid
    García Ruiz, Ignacio
    Diez Mediavilla, MontserratUBU authority Orcid
    Dieste Velasco, Mª IsabelUBU authority Orcid
    Alonso Tristán, CristinaUBU authority Orcid
    Publicado en
    Applied sciences. 2021, V. 11, n. 11, 5025
    Editorial
    MDPI
    Fecha de publicación
    2021-05
    DOI
    10.3390/app11115025
    Abstract
    Prediction of energy production is crucial for the design and installation of PV plants. In this study, five free and commercial software tools to predict photovoltaic energy production are evaluated: RETScreen, Solar Advisor Model (SAM), PVGIS, PVSyst, and PV*SOL. The evaluation involves a comparison of monthly and annually predicted data on energy supplied to the national grid with real field data collected from three real PV plants. All the systems, located in Castile and Leon (Spain), have three different tilting systems: fixed mounting, horizontal-axis tracking, and dual-axis tracking. The last 12 years of operating data, from 2008 to 2020, are used in the evaluation. Although the commercial software tools were easier to use and their installations could be described in detail, their results were not appreciably superior. In annual global terms, the results hid poor estimations throughout the year, where overestimations were compensated by underestimated results. This fact was reflected in the monthly results: the software yielded overestimates during the colder months, while the models showed better estimates during the warmer months. In most studies, the deviation was below 10% when the annual results were analyzed. The accuracy of the software was also reduced when the complexity of the dual-axis solar tracking systems replaced the fixed installation.
    Palabras clave
    Photovoltaic
    RETScreen
    SAM
    PVGIS
    PVsyst
    PV*SOL
    Energy prediction
    Materia
    Electrotecnia
    Electrical engineering
    URI
    http://hdl.handle.net/10259/7273
    Versión del editor
    https://doi.org/10.3390/app11115025
    Collections
    • Artículos SWIFT
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Files in this item
    Nombre:
    González-as_2022.pdf
    Tamaño:
    2.028Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record