Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Entre em contato
  • Deixe sua opinião
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosEsta coleçãoPor data do documentoAutoresTítulosAssuntos

    Minha conta

    EntrarCadastro

    Estatísticas

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • Ver item
    •   Página inicial
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • Ver item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8667

    Título
    A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept
    Autor
    Ramírez Sanz, José MiguelAutoridad UBU Orcid
    Garrido Labrador, José LuisAutoridad UBU Orcid
    Olivares Gil, AliciaAutoridad UBU Orcid
    García Bustillo, ÁlvaroAutoridad UBU Orcid
    Arnaiz González, ÁlvarAutoridad UBU Orcid
    Diez Pastor, José FranciscoAutoridad UBU Orcid
    Jahouh, Maha
    González Santos, JosefaAutoridad UBU Orcid
    González Bernal, JerónimoAutoridad UBU Orcid
    Allende-Río, Marta
    Valiñas Sieiro, FloritaAutoridad UBU
    Trejo Gabriel y Galán, José Mª
    Cubo Delgado, EstherAutoridad UBU Orcid
    Publicado en
    Healthcare. 2023, V. 11, n. 4, 507
    Editorial
    MDPI
    Fecha de publicación
    2023-02
    ISSN
    2227-9032
    DOI
    10.3390/healthcare11040507
    Resumo
    The consolidation of telerehabilitation for the treatment of many diseases over the last decades is a consequence of its cost-effective results and its ability to offer access to rehabilitation in remote areas. Telerehabilitation operates over a distance, so vulnerable patients are never exposed to unnecessary risks. Despite its low cost, the need for a professional to assess therapeutic exercises and proper corporal movements online should also be mentioned. The focus of this paper is on a telerehabilitation system for patients suffering from Parkinson’s disease in remote villages and other less accessible locations. A full-stack is presented using big data frameworks that facilitate communication between the patient and the occupational therapist, the recording of each session, and real-time skeleton identification using artificial intelligence techniques. Big data technologies are used to process the numerous videos that are generated during the course of treating simultaneous patients. Moreover, the skeleton of each patient can be estimated using deep neural networks for automated evaluation of corporal exercises, which is of immense help to the therapists in charge of the treatment programs.
    Palabras clave
    Parkinson’s disease
    Telerehabilitation
    Telemedicine
    Big data
    Artificial intelligence in healthcare
    Materia
    Sistema nervioso-Enfermedades
    Nervous system-Diseases
    Medicina
    Medicine
    Terapéutica
    Therapeutics
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/8667
    Versión del editor
    https://doi.org/10.3390/healthcare11040507
    Aparece en las colecciones
    • Untitled
    • Artículos ADMIRABLE
    • Untitled
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Arquivos deste item
    Nombre:
    Ramirez-healthcare_2023.pdf
    Tamaño:
    6.838Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    3
    CITATIONS
    3 total citations on Dimensions.
    3 Total citations
    3 Recent citations
    n/a Field Citation Ratio
    0.36 Relative Citation Ratio
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar registro completo