Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Advanced Data Mining Research and Bioinformatics Learning (ADMIRABLE)
    • Artículos ADMIRABLE
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Advanced Data Mining Research and Bioinformatics Learning (ADMIRABLE)
    • Artículos ADMIRABLE
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8872

    Título
    Ensemble methods and semi-supervised learning for information fusion: A review and future research directions
    Autor
    Garrido Labrador, José LuisAutoridad UBU Orcid
    Serrano Mamolar, AnaAutoridad UBU Orcid
    Maudes Raedo, Jesús M.Autoridad UBU Orcid
    Rodríguez Diez, Juan JoséAutoridad UBU Orcid
    García Osorio, CésarAutoridad UBU Orcid
    Publicado en
    Information Fusion. 2024, V. 107, 102310
    Editorial
    Elsevier
    Fecha de publicación
    2024-07
    ISSN
    1566-2535
    DOI
    10.1016/j.inffus.2024.102310
    Resumen
    Advances over the past decade at the intersection of information fusion methods and Semi-Supervised Learning (SSL) are investigated in this paper that grapple with challenges related to limited labelled data. To do so, a bibliographic review of papers published since 2013 is presented, in which ensemble methods are combined with new machine learning algorithms. A total of 128 new proposals using SSL algorithms for ensemble construction are identified and classified. All the methods are categorised by approach, ensemble type, and base classifier. Experimental protocols, pre-processing, dataset usage, unlabelled ratios, and statistical tests are also assessed, underlining the major trends, and some shortcomings of particular studies. It is evident from this literature review that foundational algorithms such as self-training and co-training are influencing current developments, and that innovative ensemble techniques are continuing to emerge. Additionally, valuable guidelines are identified in the review for improving research into intrinsically semi-supervised and unsupervised pre-processing methods, especially for regression tasks.
    Palabras clave
    Semi-supervised learning
    Ensemble learning
    Information fusion
    Semi-supervised ensemble classification
    Label scarcity
    Bibliographic review
    Research trends
    Experimental protocols
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/8872
    Versión del editor
    https://doi.org/10.1016/j.inffus.2024.102310
    Aparece en las colecciones
    • Artículos BEST-AI
    • Artículos ADMIRABLE
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Garrido-if_2024.pdf
    Tamaño:
    1.636Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem