Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • Untitled
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • Untitled
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9787

    Título
    A Computer Vision‐Based Methodology to Estimate Fruit Colour Diversity in Ornamental Pepper (Capsicum spp.)
    Autor
    Santos, Marcos Bruno da Costa
    Melo, Raylson de Sá
    Sousa, Victor Eduardo de Carvalho
    Medeiros, Artur Mendes
    Pessoa, Angela M. dos S.
    Silva, Silvokleio da Costa
    Nascimento, Antonia Maiara Marques doUBU authority Orcid
    Barroso, Priscila Alves
    Publicado en
    Plant Breeding. 2024
    Editorial
    Wiley
    Fecha de publicación
    2024-11
    ISSN
    0179-9541
    DOI
    10.1111/pbr.13237
    Abstract
    Fruit colour diversity within different ripening stages confers ornamental value for pepper plants. Using images can be helpful in analysing the fruit colour-related genetic diversity and enable selecting accessions for ornamental purposes by avoiding subjectiveness. This study aimed to evaluate the phenotypic diversity among accessions of ornamental pepper using image processing techniques to identify fruit colours. Photos from 40 fruits from each of 12 accessions were captured by a camera from a smartphone. Separate channels and colour indices were extracted from the images to analyse the accessions using both dendrogram and principal components analysis. Dendrogram analysis allowed separating accessions with predominance of dark fruits from those whose fruits showed lighter and more vivid colours, with a cophenetic correlation coefficient of 0.811. The VARI and NGRDI vegetation indices were efficient in discriminating fruits with a predominance of green colour, and the BGI could be used to discriminate accessions with predominantly reddish-brown fruits. The proposed method can be used in small-scale breeding programs for accurately assessing the development of varieties regarding their fruit colour diversity.
    Palabras clave
    Breeding programs
    Genetic diversity
    Image processing
    Ornamental plants
    Phenotyping
    Principal component analisys
    Materia
    Biotecnología agraria
    Agricultural biotechnology
    Ingeniería Agrícola
    Agricultural engineering
    URI
    http://hdl.handle.net/10259/9787
    Versión del editor
    https://doi.org/10.1111/pbr.13237
    Collections
    • Untitled
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Files in this item
    Nombre:
    Santos-pb_2024.pdf
    Tamaño:
    1.469Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record