Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Departamentos y Centros
    • Departamento de Construcciones Arquitectónicas e Ingenierías de la Construcción y del Terreno
    • Area de Construcciones Arquitectónicas
    • Artículos Construcciones Arquitectónicas
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Departamentos y Centros
    • Departamento de Construcciones Arquitectónicas e Ingenierías de la Construcción y del Terreno
    • Area de Construcciones Arquitectónicas
    • Artículos Construcciones Arquitectónicas
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/10054

    Título
    Potential of functional analysis applied to Sentinel-2 time-series to assess relevant agronomic parameters at the within-field level in viticulture
    Autor
    Vélez Martín, SergioAutoridad UBU
    Rançon, Florian
    Barajas, Enrique
    Brunel, Guilhem
    Rubio Cano, José Antonio
    Tisseyre, Bruno
    Publicado en
    Computers and Electronics in Agriculture. 2022, V. 194, p. 106726
    Editorial
    Elsevier
    Fecha de publicación
    2022-03
    ISSN
    0168-1699
    DOI
    10.1016/j.compag.2022.106726
    Resumen
    Sentinel-2 satellite imagery offers a wealth of spectral information combined with a weekly temporal resolution. It is seen as a promising tool to extract spatial information about vineyards and link them to agronomic parameters. Usually, only one or a few images are commonly employed at specific stages like veraison in viticulture. Extracting further information from time-series images may be of interest; however, this remains an issue due to the noisy and complex nature of extracted time-series. The functional analysis proposes a robust continuous representation of these time-series, which can then be used with adapted statistical tools. This paper focuses on extracting relevant information at the within-field level on two vineyards in Spain, which can be jointly interpreted with field observations and measurements. More precisely, it discusses the use of popular linear dimensionality reduction techniques, namely Principal Component Analysis (PCA) and Partial Least Square (PLS), adapted to functional data in order to decompose NDVI time-series into a weighted sum of several functional components. The unsupervised methods, like PCA, decomposed the spatial structure within the vineyards using a few components, resulting in a better and more manageable dataset than the one obtained using simple non-constrained methods. The results show significant correlations with ground-truth data showing the added value of considering the whole NDVI temporal series compared to a single NDVI map at veraison. The proposed approach provided helpful information about each component's yearly trend. Moreover, the results are linked to grapevines' seasonal phenology and management practices, highlighting phenomena affecting the vineyard's development. This method is particularly suited for interactions with field experts, who may derive relevant agronomic information from the decomposition maps.
    Palabras clave
    PCA
    Vineyard
    Dimensionality reduction
    Functional analysis
    Clustering
    Materia
    Ingeniería Agrícola
    Agricultural engineering
    Viticultura
    Viticulture
    URI
    http://hdl.handle.net/10259/10054
    Versión del editor
    https://doi.org/10.1016/j.compag.2022.106726
    Aparece en las colecciones
    • Artículos Construcciones Arquitectónicas
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Velez-caeia_2022.pdf
    Tamaño:
    1.609Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem