Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Departamentos y Centros
    • Departamento de Construcciones Arquitectónicas e Ingenierías de la Construcción y del Terreno
    • Area de Construcciones Arquitectónicas
    • Artículos Construcciones Arquitectónicas
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Departamentos y Centros
    • Departamento de Construcciones Arquitectónicas e Ingenierías de la Construcción y del Terreno
    • Area de Construcciones Arquitectónicas
    • Artículos Construcciones Arquitectónicas
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/10055

    Título
    Mapping the spatial variability of Botrytis bunch rot risk in vineyards using UAV multispectral imagery
    Autor
    Vélez Martín, SergioAutoridad UBU
    Ariza Sentís, Mar
    Valente, João
    Publicado en
    European Journal of Agronomy. 2023, V. 142, p. 126691
    Editorial
    Elsevier
    Fecha de publicación
    2023-01
    ISSN
    1161-0301
    DOI
    10.1016/j.eja.2022.126691
    Resumen
    The fungus Botrytis cinerea causes severe diseases in many crops. In grapevines, it causes Botrytis bunch rot (BBR), one of the most reported diseases worldwide. It affects all herbaceous organs of the vine, especially the ripe berries, causing significant reductions in yield and wine quality. Botrytis detection models traditionally focus on temporal analysis at a specific spatial location, ignoring the study of the spatial variability of the crop. Unmanned aerial vehicles (UAVs) equipped with multispectral cameras can provide high-resolution images that can be valuable information to develop a tool for aerial pest detection. This paper proposes an algorithm to assess the risk of Botrytis development in a vineyard in Spain, using as input products generated by UAV imagery: DTM (Digital Terrain Model), NDVI (Normalised Difference Vegetation Index), CHM (Canopy Height Model) and LAI (Leaf Area Index). They represent the height and architecture of the canopy, the topography and the plant status. Healthy vines were significantly different from vines affected by Botrytis (p < 0.05) in each of these variables, supporting the consistency of using these inputs for the model. This methodology combines photogrammetric, spatial analysis techniques, and machine learning classification methods with deep vineyard-related agronomic knowledge to produce heatmaps with acceptable accuracy (R² > 0.7) that may support vineyard managers in understanding the spatial variability of the disease, allowing the spatial 2D visualisation of the risk of BBR disease development and, potentially, resulting in higher operational efficiency and reducing phytosanitary treatments, as well as economic costs. Furthermore, the present work takes advantage of imaging technologies that provide information about any location in the field, not only about specific points in the vineyard, suggesting that UAV imagery is appropriate to measure the likelihood of BBR development within the vineyard, highlighting the importance of efficient disease management based on spatial variability.
    Palabras clave
    Disease detection
    Multispectral
    NDVI
    Risk
    UAV
    Materia
    Agricultura
    Agriculture
    Viticultura
    Viticulture
    URI
    http://hdl.handle.net/10259/10055
    Versión del editor
    https://doi.org/10.1016/j.eja.2022.126691
    Aparece en las colecciones
    • Artículos Construcciones Arquitectónicas
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Velez-ejoa_2023.pdf
    Tamaño:
    9.926Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem