Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Departamentos y Centros
    • Departamento de Construcciones Arquitectónicas e Ingenierías de la Construcción y del Terreno
    • Area de Construcciones Arquitectónicas
    • Artículos Construcciones Arquitectónicas
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Departamentos y Centros
    • Departamento de Construcciones Arquitectónicas e Ingenierías de la Construcción y del Terreno
    • Area de Construcciones Arquitectónicas
    • Artículos Construcciones Arquitectónicas
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/10059

    Título
    A Novel Technique Using Planar Area and Ground Shadows Calculated from UAV RGB Imagery to Estimate Pistachio Tree (Pistacia vera L.) Canopy Volume
    Autor
    Vélez Martín, SergioAutoridad UBU
    Vacas Izquierdo, Rubén
    Martín Gutiérrez, Hugo
    Ruano Rosa, David
    Álvarez Martín, Sara
    Publicado en
    Remote Sensing. 2022, V. 14, n. 23, p. 6006
    Editorial
    MDPI
    Fecha de publicación
    2022-11
    DOI
    10.3390/rs14236006
    Resumen
    Interest in pistachios has increased in recent years due to their healthy nutritional profile and high profitability. In pistachio trees, as in other woody crops, the volume of the canopy is a key factor that affects the pistachio crop load, water requirements, and quality. However, canopy/crown monitoring is time-consuming and labor-intensive, as it is traditionally carried out by measuring tree dimensions in the field. Therefore, methods for rapid tree canopy characterization are needed for providing accurate information that can be used for management decisions. The present study focuses on developing a new, fast, and low-cost technique, based on two main steps, for estimating the canopy volume in pistachio trees. The first step is based on adequately planning the UAV (unmanned aerial vehicle) flight according to light conditions and segmenting the RGB (Red, Green, Blue) imagery using machine learning methods. The second step is based on measuring vegetation planar area and ground shadows using two methodological approaches: a pixel-based classification approach and an OBIA (object-based image analysis) approach. The results show statistically significant linear relationships (p < 0.05) between the ground-truth data and the estimated volume of pistachio tree crowns, with R2 > 0.8 (pixel-based classification) and R2 > 0.9 (OBIA). The proposed methodologies show potential benefits for accurately monitoring the vegetation of the trees. Moreover, the method is compatible with other remote sensing techniques, usually performed at solar noon, so UAV operators can plan a flexible working day. Further research is needed to verify whether these results can be extrapolated to other woody crops.
    Palabras clave
    Leaf area
    Drone
    Pistachio
    Aerial
    Image analysis
    Precision agriculture
    Machine learning
    Spatial variability
    Random forest
    Materia
    Agricultura
    Agriculture
    URI
    http://hdl.handle.net/10259/10059
    Versión del editor
    https://doi.org/10.3390/rs14236006
    Aparece en las colecciones
    • Artículos Construcciones Arquitectónicas
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    velez-rs_2022.pdf
    Tamaño:
    11.94Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem