Mostrar el registro sencillo del ítem

dc.contributor.authorTamayo Ramos, Juan Antonio 
dc.contributor.authorRumbo Lorenzo, Carlos 
dc.contributor.authorCaso, Federica
dc.contributor.authorRinaldi, Antonio
dc.contributor.authorGarroni, Sebastiano 
dc.contributor.authorNotargiacomo, Andrea
dc.contributor.authorRomero Santacreu, Lorena 
dc.contributor.authorCuesta López, Santiago 
dc.date.accessioned2019-11-12T11:34:01Z
dc.date.available2019-11-12T11:34:01Z
dc.date.issued2018-09
dc.identifier.issn1944-8244
dc.identifier.urihttp://hdl.handle.net/10259/5175
dc.description.abstractPolymeric electrospun fibers are becoming popular in microbial biotechnology because of their exceptional physicochemical characteristics, biodegradability, surface-to-volume ratio, and compatibility with biological systems, which give them a great potential as microbial supports to be used in production processes or environmental applications. In this work, we analyzed and compared the ability of Escherichia coli, Pseudomonas putida, Brevundimonas diminuta, and Sphingobium fuliginis to develop biofilms on different types of polycaprolactone (PCL) microfibers. These bacterial species are relevant in the production of biobased chemicals, enzymes, and proteins for therapeutic use and bioremediation. The obtained results demonstrated that all selected species were able to attach efficiently to the PCL microfibers. Also, the ability of pure cultures of S. fuliginis (former Flavobacterium sp. ATCC 27551, a very relevant strain in the bioremediation of organophosphorus compounds) to form dense biofilms was observed for the first time, opening the possibility of new applications for this microorganism. This material showed to have a high microbial loading capacity, regardless of the mesh density and fiber diameter. A comparative analysis between PCL and polylactic acid (PLA) electrospun microfibers indicated that both surfaces have a similar bacterial loading capacity, but the former material showed higher resistance to microbial degradation than PLA.en
dc.description.sponsorshipEuropean Union’s H2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 691095. The contracts of J.A.T.-R. and C.R. were supported by the grant nos. BU079U16 and BU092U16, that were co-financed by Junta de Castilla y León and the European Social Fund.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Societyen
dc.relation.ispartofACS Applied Materials and Interfaces. 2018, V. 10, n. 38, p. 32773-32781
dc.subjectelectrospun polycaprolactoneen
dc.subjectmicrofibersen
dc.subjectbiofilmen
dc.subjectbacterial attachmenten
dc.subjectbiotechnologyen
dc.subject.otherMicrobiologíaes
dc.subject.otherMicrobiologyen
dc.subject.otherMaterialeses
dc.subject.otherMaterialsen
dc.titleAnalysis of Polycaprolactone Microfibers as Biofilm Carriers for Biotechnologically Relevant Bacteriaen
dc.typeinfo:eu-repo/semantics/article
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.relation.publisherversionhttps://doi.org/10.1021/acsami.8b07245
dc.identifier.doi10.1021/acsami.8b07245
dc.relation.projectIDinfo:eu-repo/grantAgreement/JCyL/BU079U16
dc.relation.projectIDinfo:eu-repo/grantAgreement/JCyL/BU092U16
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/691095
dc.identifier.essn1944-8252
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion


Ficheros en este ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem