Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contattaci
  • Manda Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto RIUBUArchivi & CollezioniData di pubblicazioneAutoriTitoliSoggettiQuesta CollezioneData di pubblicazioneAutoriTitoliSoggetti

    My Account

    LoginRegistrazione

    Statistiche

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Mostra Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Mostra Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6902

    Título
    ECOFLOTA: Business intelligence system for the transition towards sustainable mobility fleets
    Autor
    Güerri, Sergio
    Moya Polo, Javier
    Rodríguez Álvaro, José Ángel
    Calvo Monteagudo, Mireia
    Publicado en
    R-Evolucionando el transporte
    Editorial
    Universidad de Burgos. Servicio de Publicaciones e Imagen Institucional
    Fecha de publicación
    2021-07
    ISBN
    978-84-18465-12-3
    DOI
    10.36443/10259/6902
    Descripción
    Trabajo presentado en: R-Evolucionando el transporte, XIV Congreso de Ingeniería del Transporte (CIT 2021), realizado en modalidad online los días 6, 7 y 8 de julio de 2021, organizado por la Universidad de Burgos
    Abstract
    The lack of knowledge about the possibilities of switching to sustainable fleets and their costs lead companies to prolong the life of their fleets as much as possible. Therefore, the overall objective of ECOFLOTA is to provide arguments for companies to decide to migrate their fleets towards new ones that provide more sustainable mobility. Within this framework, this project proposes the development of an automated analysis, planning and forecasting system consisting of i) a support tool for the optimised migration towards cleaner vehicles to achieve the objectives of zero emissions and green transport; ii) a predictive model of the useful life of these new sustainable vehicles and iii) the development of an eco-driving model to optimise the performance of these new sustainable vehicles. Hence, the project proposes the design and development of a global system at all levels for the upgrade of fleets with low emission vehicles. The project was developed over a period of 15 months, during which time last mile delivery companies were involved in the definition, design, development and validation of the system, in order to meet the technical specifications and functional requirements of their operations. As a result, 61 use cases were simulated considering three types of routes (urban, short distance and interurban), as well as three types of low emission vehicles (electric, gas and hybrid)
    Palabras clave
    Logística
    Logistics
    Operaciones
    Operations
    Transporte de mercancías
    Transportation of goods
    Materia
    Ingeniería civil
    Civil engineering
    Transportes
    Transportation
    URI
    http://hdl.handle.net/10259/6902
    Versión del editor
    https://doi.org/10.36443/9788418465123
    Relacionado con
    http://hdl.handle.net/10259/6490
    Aparece en las colecciones
    • Untitled
    Files in questo item
    Nombre:
    Güerri_CIT2021_919-935.pdf
    Tamaño:
    510.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostra tutti i dati dell'item