Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6997

    Título
    Signal processing and machine learning for air traffic delay prediction
    Autor
    Tenorio, Víctor M.
    García Marqués, Antonio
    Cadarso, Luis
    Publicado en
    R-Evolucionando el transporte
    Editorial
    Universidad de Burgos. Servicio de Publicaciones e Imagen Institucional
    Fecha de publicación
    2021-07
    ISBN
    978-84-18465-12-3
    DOI
    10.36443/10259/6997
    Descripción
    Trabajo presentado en: R-Evolucionando el transporte, XIV Congreso de Ingeniería del Transporte (CIT 2021), realizado en modalidad online los días 6, 7 y 8 de julio de 2021, organizado por la Universidad de Burgos
    Abstract
    As data quality and quantity increase, the prediction of future events using machine learning (ML) techniques across engineering disciplines grows by the day. Air transportation cannot be an exception. Delay prediction is paramount in the aerospace industry, since air traffic delays are responsible for millions of dollars in losses to airlines and passengers, along with negative impacts on the environment. In this contribution, we leverage recent signal processing and ML advances to put forth a processing-and-learning pipeline for the prediction of air traffic delays. The proposed approach is executed in several steps. Firstly, we apply signal processing and data science techniques to filter and denoise the original information. Secondly, we run a descriptive analysis of the data and design new features tailored to the prediction problem. Thirdly, we implement a scheme to select the most informative of those features, contributing to a better generalization performance, and offering useful insights. Two algorithms are used to that end: one based on random forests and one employing a sparse logistic regression approach. Finally, once the features are selected, we implement, analyse, and compare several ML architectures (from classical classifiers to deep learning) to predict the delay. While the focus of the comparison is prediction accuracy, metrics such as sample and computational complexity are also discussed. Numerical experiments are drawn from the US domestic market for the year 2018, when more than 7 million flights between 358 airports were flown. The designed processing/learning pipeline reveals interesting insights and achieves better prediction results than the state of the art. The results confirm that air traffic delay prediction is a challenging problem, mainly because the delay is extremely airport-dependent and the data is highly unbalanced (i.e., only a small percentage of flights are noticeable delayed), and identify worth-pursuing future lines of work.
    Palabras clave
    Industria aérea
    Airline industry
    Materia
    Ingeniería civil
    Civil engineering
    Transporte
    Transportation
    URI
    http://hdl.handle.net/10259/6997
    Versión del editor
    https://doi.org/10.36443/9788418465123
    Relacionado con
    http://hdl.handle.net/10259/6490
    Collections
    • Untitled
    Files in this item
    Nombre:
    Tenorio_CIT2021_2603-2614.pdf
    Tamaño:
    407.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record