Mostra i principali dati dell'item

dc.contributor.authorCano, Begoña
dc.contributor.authorReguera López, Nuria 
dc.date.accessioned2023-02-07T12:04:48Z
dc.date.available2023-02-07T12:04:48Z
dc.date.issued2022-06
dc.identifier.issn0170-4214
dc.identifier.urihttp://hdl.handle.net/10259/7410
dc.description.abstractIn this paper a thorough analysis is carried out of the type of order reduction that Lawson methods exhibit when used to integrate nonlinear initial boundary value problems. In particular, we focus on nonlinear reaction-diffusion problems, and therefore, this study is important in a large number of practical applications modeled by this type of nonlinear equations. A theoretical study of the local and global error of the total discretization of the problem is carried out, taking into account both, the error coming from the space discretization and that due to the integration in time. These results are also corroborated by the numerical experiments performed in this paper.en
dc.description.sponsorshipMinisterio de Ciencia e Innovación and Regional Development European Funds, Grant/Award Number: PGC2018-101443-B-I00; Junta de Castilla y León and Feder, Grant/Award Number: VA169P20en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherWileyen
dc.relation.ispartofMathematical Methods in the Applied Sciences. 2022, V. 45, n. 17, p. 11319-11330es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectExponential methodsen
dc.subjectLawson methodsen
dc.subjectNonlinear reaction-diffusion problemsen
dc.subjectOrder reductionen
dc.subject.otherMatemáticases
dc.subject.otherMathematicsen
dc.titleCMMSE: Analysis of order reduction when Lawson methods integrate nonlinear initial boundary value problemsen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1002/mma.8451es
dc.identifier.doi10.1002/mma.8451
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101443-B-I00/ES/RESOLUCION NUMERICA PRECISA EN TIEMPO DE ECUACIONES EN DERIVADAS PARCIALES/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/Junta de Castilla y León//VA169P20//Inversión en tecnologías limpias y políticas medioambientales: Modelización matemática y análisis mediante juegos dinámicos/es
dc.identifier.essn1099-1476
dc.journal.titleMathematical Methods in the Applied Sciencesen
dc.volume.number45es
dc.issue.number17es
dc.page.initial11319es
dc.page.final11330es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Files in questo item

Thumbnail

Questo item appare nelle seguenti collezioni

Mostra i principali dati dell'item