Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Departamentos y Centros
    • Departamento de Matemáticas y Computación
    • Área de Matemática Aplicada
    • Artículos Matemática Aplicada
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Departamentos y Centros
    • Departamento de Matemáticas y Computación
    • Área de Matemática Aplicada
    • Artículos Matemática Aplicada
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7968

    Título
    Why Improving the Accuracy of Exponential Integrators Can Decrease Their Computational Cost?
    Autor
    Cano, Begoña
    Reguera López, NuriaAutoridad UBU Orcid
    Publicado en
    Mathematics. 2021, V. 9, n. 9, 1008
    Editorial
    MDPI
    Fecha de publicación
    2021-04
    DOI
    10.3390/math9091008
    Resumen
    In previous papers, a technique has been suggested to avoid order reduction when integrating initial boundary value problems with several kinds of exponential methods. The technique implies in principle to calculate additional terms at each step from those already necessary without avoiding order reduction. The aim of the present paper is to explain the surprising result that, many times, in spite of having to calculate more terms at each step, the computational cost of doing it through Krylov methods decreases instead of increases. This is very interesting since, in that way, the methods improve not only in terms of accuracy, but also in terms of computational cost.
    Palabras clave
    Avoiding order reduction
    Efficiency
    Krylov methods
    Materia
    Matemáticas
    Mathematics
    URI
    http://hdl.handle.net/10259/7968
    Versión del editor
    https://doi.org/10.3390/math9091008
    Aparece en las colecciones
    • Artículos Matemática Aplicada
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Cano-mathematics_2021.pdf
    Tamaño:
    795.6Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem