dc.contributor.author | Cano, Begoña | |
dc.contributor.author | Reguera López, Nuria | |
dc.date.accessioned | 2023-11-21T10:47:38Z | |
dc.date.available | 2023-11-21T10:47:38Z | |
dc.date.issued | 2021-06 | |
dc.identifier.issn | 0006-3835 | |
dc.identifier.uri | http://hdl.handle.net/10259/8073 | |
dc.description.abstract | It is well known that Lawson methods suffer from a severe order reduction when integrating initial boundary value problems where the solutions are not periodic in space or do not satisfy enough conditions of annihilation on the boundary. However, in a previous paper, a modification of Lawson quadrature rules has been suggested so that no order reduction turns up when integrating linear problems subject to time-dependent boundary conditions. In this paper, we describe and thoroughly analyse a technique to avoid also order reduction when integrating nonlinear problems. This is very useful because, given any Runge–Kutta method of any classical order, a Lawson method can be constructed associated to it for which the order is conserved. | en |
dc.description.sponsorship | This work was funded by Ministerio de Ciencia e Innovación and Regional Development European Funds through project PGC2018-101443-B-I00 and by Junta de Castilla y León and Feder through projects VA169P20. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | es |
dc.publisher | Springer | en |
dc.relation.ispartof | BIT Numerical Mathematics. 2022, V. 62, n. 2, p. 431-463 | en |
dc.subject | Order reduction | en |
dc.subject | Lawson methods | en |
dc.subject | Reaction-diffusion | en |
dc.subject | Initial boundary value problems | en |
dc.subject.other | Matemáticas | es |
dc.subject.other | Mathematics | en |
dc.title | How to avoid order reduction when Lawson methods integrate nonlinear initial boundary value problems | en |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.relation.publisherversion | https://doi.org/10.1007/s10543-021-00879-8 | es |
dc.identifier.doi | 10.1007/s10543-021-00879-8 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101443-B-I00/ES/RESOLUCION NUMERICA PRECISA EN TIEMPO DE ECUACIONES EN DERIVADAS PARCIALES/ | es |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Castilla y León//VA169P20//Inversión en tecnologías limpias y políticas medioambientales: Modelización matemática y análisis mediante juegos dinámicos/ | es |
dc.identifier.essn | 1572-9125 | |
dc.journal.title | BIT Numerical Mathematics | en |
dc.volume.number | 62 | es |
dc.issue.number | 2 | es |
dc.page.initial | 431 | es |
dc.page.final | 463 | es |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |