Mostrar registro simples

dc.contributor.authorCano, Begoña
dc.contributor.authorReguera López, Nuria 
dc.date.accessioned2023-11-21T10:47:38Z
dc.date.available2023-11-21T10:47:38Z
dc.date.issued2021-06
dc.identifier.issn0006-3835
dc.identifier.urihttp://hdl.handle.net/10259/8073
dc.description.abstractIt is well known that Lawson methods suffer from a severe order reduction when integrating initial boundary value problems where the solutions are not periodic in space or do not satisfy enough conditions of annihilation on the boundary. However, in a previous paper, a modification of Lawson quadrature rules has been suggested so that no order reduction turns up when integrating linear problems subject to time-dependent boundary conditions. In this paper, we describe and thoroughly analyse a technique to avoid also order reduction when integrating nonlinear problems. This is very useful because, given any Runge–Kutta method of any classical order, a Lawson method can be constructed associated to it for which the order is conserved.en
dc.description.sponsorshipThis work was funded by Ministerio de Ciencia e Innovación and Regional Development European Funds through project PGC2018-101443-B-I00 and by Junta de Castilla y León and Feder through projects VA169P20.en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherSpringeren
dc.relation.ispartofBIT Numerical Mathematics. 2022, V. 62, n. 2, p. 431-463en
dc.subjectOrder reductionen
dc.subjectLawson methodsen
dc.subjectReaction-diffusionen
dc.subjectInitial boundary value problemsen
dc.subject.otherMatemáticases
dc.subject.otherMathematicsen
dc.titleHow to avoid order reduction when Lawson methods integrate nonlinear initial boundary value problemsen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1007/s10543-021-00879-8es
dc.identifier.doi10.1007/s10543-021-00879-8
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101443-B-I00/ES/RESOLUCION NUMERICA PRECISA EN TIEMPO DE ECUACIONES EN DERIVADAS PARCIALES/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/Junta de Castilla y León//VA169P20//Inversión en tecnologías limpias y políticas medioambientales: Modelización matemática y análisis mediante juegos dinámicos/es
dc.identifier.essn1572-9125
dc.journal.titleBIT Numerical Mathematicsen
dc.volume.number62es
dc.issue.number2es
dc.page.initial431es
dc.page.final463es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples