Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Departamentos y Centros
    • Departamento de Matemáticas y Computación
    • Área de Matemática Aplicada
    • Artículos Matemática Aplicada
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Departamentos y Centros
    • Departamento de Matemáticas y Computación
    • Área de Matemática Aplicada
    • Artículos Matemática Aplicada
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8076

    Título
    CMMSE: analysis and comparison of some numerical methods to solve a nonlinear fractional Gross–Pitaevskii system
    Autor
    Serna-Reyes, Adán
    Macías Díaz, Jorge E.
    Gallegos, Armando
    Reguera López, NuriaAutoridad UBU Orcid
    Publicado en
    Journal of Mathematical Chemistry. 2022, V. 60, n. 7, p. 1272–1286
    Editorial
    Springer
    Fecha de publicación
    2022-08
    ISSN
    0259-9791
    DOI
    10.1007/s10910-022-01360-9
    Resumen
    In this work, we introduce and theoretically analyze various computational techniques to approximate the solutions of solve a fractional extension of a double condensate system. More precisely, the continuous model extends the well-known Gross–Pitaevskii equation to the fractional scenario, and considering two interacting condensates. The mathematical system considers two complex-valued regimes with coupling, and a mass and energy functions are associated to this model. Both are constant in time. Here, various discretizations are analyzed to solve this system. Some of them are able to preserve the mass and the energy, some are not. We discuss the existence of solutions, the consistency of the models, the stability and the convergence. Finally, from the computational point of view, some algorithms are simpler to code than others. In fact, those for which the mass and the energy are conserved are more difficult to implement. We discuss here pros and cons.
    Palabras clave
    Fractional Bose–Einstein model
    Double-fractional system
    Fully discrete model
    Stability and convergence analysis
    Materia
    Matemáticas
    Mathematics
    URI
    http://hdl.handle.net/10259/8076
    Versión del editor
    https://doi.org/10.1007/s10910-022-01360-9
    Aparece en las colecciones
    • Artículos Matemática Aplicada
    Ficheros en este ítem
    Nombre:
    Serna-jmc_2022.pdf
    Tamaño:
    448Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem