Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8314
Título
Positivity preserving high order schemes for angiogenesis models
Publicado en
International Journal of Nonlinear Sciences and Numerical Simulation. 2022, V. 23, n. 6, p. 917-929
Editorial
De Gruyter
Fecha de publicación
2022
ISSN
1565-1339
DOI
10.1515/ijnsns-2021-0112
Resumen
Hypoxy induced angiogenesis processes can be described by coupling an integrodifferential kinetic equation of Fokker–Planck type with a diffusion equation for the angiogenic factor. We propose high order positivity preserving schemes to approximate the marginal tip density by combining an asymptotic reduction with weighted essentially non oscillatory and strong stability preserving time discretization. We capture soliton-like solutions representing blood vessel formation and spread towards hypoxic regions.
Palabras clave
Angiogenesis
Asymptotic reduction
Fokker–Planck
High order schemes
Kinetic models
Positivity preserving
Materia
Matemáticas
Mathematics
Versión del editor
Aparece en las colecciones