Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8371
Título
Object based Bayesian full-waveform inversion for shear elastography
Publicado en
Inverse Problems. 2023, V. 39, n. 7, 075007
Editorial
IOP Publishing
Fecha de publicación
2023
ISSN
0266-5611
DOI
10.1088/1361-6420/acd5f8
Resumen
We develop a computational framework to quantify uncertainty in shear elastography imaging of anomalies in tissues. We adopt a Bayesian inference formulation. Given the observed data, a forward model and their uncertainties, we find the posterior probability of parameter fields representing the geometry of the anomalies and their shear moduli. To construct a prior probability, we exploit the topological energies of associated objective functions. We demonstrate the approach on synthetic two dimensional tests with smooth and irregular shapes. Sampling the posterior distribution by Markov Chain Monte Carlo (MCMC) techniques we obtain statistical information on the shear moduli and the geometrical properties of the anomalies. General affine-invariant ensemble MCMC samplers are adequate for shapes characterized by parameter sets of low to moderate dimension. However, MCMC methods are computationally expensive. For simple shapes, we devise a fast optimization scheme to calculate the maximum a posteriori (MAP) estimate representing the most likely parameter values. Then, we approximate the posterior distribution by a Gaussian distribution found by linearization about the MAP point to capture the main mode at a low computational cost.
Palabras clave
Inverse scattering
Full waveform inversion
Topological energy
Bayesian inference
Markov Chain Monte Carlo
PDE constrained optimization
Laplace approximation
Materia
Matemáticas
Mathematics
Ciencias biomédicas
Medical sciences
Versión del editor
Aparece en las colecciones
Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional