Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7254

    Título
    Smart Buildings IoT Networks Accuracy Evolution Prediction to Improve Their Reliability Using a Lotka–Volterra Ecosystem Model
    Autor
    Casado Vara, Roberto CarlosUBU authority Orcid
    Canal-Alonso, Ángel
    Martín del Rey, Ángel
    Prieta, Fernando de la
    Prieto, Javier
    Publicado en
    Sensors. 2019, V. 19, n. 21, e4642
    Editorial
    MDPI
    Fecha de publicación
    2019-10
    DOI
    10.3390/s19214642
    Abstract
    Internet of Things (IoT) is the paradigm that has largely contributed to the development of smart buildings in our society. This technology makes it possible to monitor all aspects of the smart building and to improve its operation. One of the main challenges encountered by IoT networks is that the the data they collect may be unreliable since IoT devices can lose accuracy for several reasons (sensor wear, sensor aging, poorly constructed buildings, etc.). The aim of our work is to study the evolution of IoT networks over time in smart buildings. The hypothesis we have tested is that, by amplifying the Lotka–Volterra equations as a community of living organisms (an ecosystem model), the reliability of the system and its components can be predicted. This model comprises a set of differential equations that describe the relationship between an IoT network and multiple IoT devices. Based on the Lotka–Volterra model, in this article, we propose a model in which the predators are the non-precision IoT devices and the prey are the precision IoT devices. Furthermore, a third species is introduced, the maintenance staff, which will impact the interaction between both species, helping the prey to survive within the ecosystem. This is the first Lotka–Volterra model that is applied in the field of IoT. Our work establishes a proof of concept in the field and opens a wide spectrum of applications for biology models to be applied in IoT.
    Palabras clave
    Internet of Things
    Lotka-Volterra model
    Predator-prey system
    Bio-inspired system evolution
    Algorithm desing
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/7254
    Versión del editor
    https://doi.org/10.3390/s19214642
    Collections
    • Artículos GICAP
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Files in this item
    Nombre:
    Casado-sensors_2019.pdf
    Tamaño:
    737.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record