Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Diseño Inclusivo Personalizado (DINPER)
    • Artículos DINPER
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Diseño Inclusivo Personalizado (DINPER)
    • Artículos DINPER
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7435

    Título
    Neural network modelling and prediction of an Anaerobic Filter Membrane Bioreactor
    Autor
    Cámara Nebreda, José MaríaAutoridad UBU Orcid
    Diez Blanco, VictorinoAutoridad UBU Orcid
    Ramos Rodríguez, CiprianoAutoridad UBU Orcid
    Publicado en
    Engineering Applications of Artificial Intelligence. 2023, V. 118, 105643
    Editorial
    Elsevier
    Fecha de publicación
    2023-02
    ISSN
    0952-1976
    DOI
    10.1016/j.engappai.2022.105643
    Resumen
    Anaerobic membrane bioreactors have become an environmentally friendly solution for wastewater treatment. The lack of sufficiently accurate mathematical procedures to model their behaviour and the fouling process of the membranes, poses a challenge when trying to optimise their energy consumption and maintenance costs. An accurate model of the fouling process of the membranes is critical to make the most of this technology. This is a perfect scenario in which to introduce neural networks (NN) as an alternative to mathematical modelling. However, the duration of the experiments and the difficulties in measuring some relevant variables, make it hard to collect high quality datasets to train the NN. Our goal is to obtain a good prediction of the fouling status of the membranes to enable an adjustment of operation conditions and maintenance procedures ahead in time. To do so we must obtain high quality datasets to train our neural networks. The combination of static and dynamic networks enables us to leverage the best prediction capabilities of each one. This combination requires a preprocessing of the datasets that separates trends from oscillations. The outputs obtained need to be put together to build up the predicted evolution of fouling. Accurate predictions are then extended from 25 to up to 75 filtration cycles. To maintain and even extend accuracy after sudden changes in operating conditions, retraining the NN every 25 cycles is proposed. AI based real time predictions open a new scope for decision making, and optimisation in the field of anaerobic membrane reactors.
    Palabras clave
    AnMBR
    Filtration
    Neural networks
    Feed forward
    LSTM
    Preprocessing
    Retraining
    Prediction
    Materia
    Electrotecnia
    Electrical engineering
    Ingeniería química
    Chemical engineering
    URI
    http://hdl.handle.net/10259/7435
    Versión del editor
    https://doi.org/10.1016/j.engappai.2022.105643
    Aparece en las colecciones
    • Artículos BIOIND
    • Artículos DINPER
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Camara-eaai_2023.pdf
    Tamaño:
    3.902Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem