Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez Diez, Juan José 
dc.contributor.authorJuez Gil, Mario 
dc.contributor.authorArnaiz González, Álvar 
dc.contributor.authorKuncheva, Ludmila I. .
dc.date.accessioned2025-01-24T09:21:02Z
dc.date.available2025-01-24T09:21:02Z
dc.date.issued2020-08
dc.identifier.issn0957-4174
dc.identifier.urihttp://hdl.handle.net/10259/10032
dc.description.abstractOver the past few decades, the remarkable prediction capabilities of ensemble methods have been used within a wide range of applications. Maximization of base-model ensemble accuracy and diversity are the keys to the heightened performance of these methods. One way to achieve diversity for training the base models is to generate artificial/synthetic instances for their incorporation with the original instances. Recently, the mixup method was proposed for improving the classification power of deep neural networks (Zhang, Cissé, Dauphin, and Lopez-Paz, 2017). Mixup method generates artificial instances by combining pairs of instances and their labels, these new instances are used for training the neural networks promoting its regularization. In this paper, new regression tree ensembles trained with mixup, which we will refer to as Mixup Regression Forest, are presented and tested. The experimental study with 61 datasets showed that the mixup approach improved the results of both Random Forest and Rotation Forest.en
dc.description.sponsorshipThis work was supported through project TIN2015-67534-P (MINECO/FEDER, UE) of the Ministerio de Economía y Competitividad of the Spanish Government, project BU085P17 (JCyL/FEDER, UE) of the Junta de Castilla y León (both projects co-financed through European Union FEDER funds), and by the Consejería de Educación of the Junta de Castilla y León and the European Social Fund through a pre-doctoral grant (EDU/1100/2017). The third author is grateful for a Mobility Grant (CAS19/00100) from the Ministerio de Ciencia, Innovación y Universidades of the Spanish Government. The authors gratefully acknowledge the support of NVIDIA Corporation and its donation of the TITAN Xp GPUs that facilitated this research.en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofExpert Systems with Applications. 2020, V. 151, 113376es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMixupen
dc.subjectRegressionen
dc.subjectRandom foresten
dc.subjectRotation foresten
dc.subject.otherRedes neuronales artificialeses
dc.subject.otherNeural networks (Computer science)en
dc.titleAn experimental evaluation of mixup regression forestsen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1016/j.eswa.2020.113376es
dc.identifier.doi10.1016/j.eswa.2020.113376
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TIN2015-67534-P/ES/ALGORITMOS DE ENSEMBLES PARA PROBLEMAS DE SALIDAS MULTIPLES. NUEVOS DESARROLLOS Y APLICACIONES/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/Junta de Castilla y León//BU085P17//Minería de datos para le mejora del mantenimiento y disponibilidad de máquinas de altas presiones/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICIU/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/CAS19%2F00100/ES/es
dc.journal.titleExpert Systems with Applicationsen
dc.volume.number151es
dc.page.initial113376es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en este ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem