Mostrar el registro sencillo del ítem

dc.contributor.authorHidalgo-Betanzos, Juan Maria
dc.contributor.authorProl Godoy, Irati
dc.contributor.authorTerés Zubiaga, Jon
dc.contributor.authorBriones Llorente, Raúl 
dc.contributor.authorMartín Garin, Alexander
dc.date.accessioned2025-02-11T12:19:46Z
dc.date.available2025-02-11T12:19:46Z
dc.date.issued2025-01
dc.identifier.urihttp://hdl.handle.net/10259/10206
dc.description.abstractBuilding energy renovations demand expertise from professionals to guide processes, including diagnostics, project planning, interventions, and maintenance. The emergence of open-access AI, like ChatGPT in November 2022, offers new possibilities for improving these processes by assisting or potentially replacing human experts. This study explores the effectiveness of ChatGPT in diagnosing energy renovation measures. Initial assessments involve basic queries to the AI, followed by the inclusion of additional data and secondary questions to gauge its full diagnostic potential. An existing building case from the literature is given to the AI to define the best energy renovation measures. Expert evaluations and comparisons with research-backed solutions assess the AI’s performance using different degrees of questioning details over 60 repetitions. The results indicate that ChatGPT can provide valuable insights and generate comprehensive lists of feasible measures and preliminary cost calculations and payback, but, in general, it lacks depth and quality without specialized input and preparation. A significant quality improvement was found between the tests with 2023 and 2024 AI versions. Open-access AI proves capable of enhancing renovation diagnostics but remains a complement rather than a replacement for building renovation expert judgment. This research underscores the potential of mainstream AI to democratize access to knowledge, albeit with limitations tied to its dependence on quality inputs and contextual expertise.en
dc.description.sponsorshipThis publication is part of the R+D+i project PID2021-126739OB-C22, financed by MCIN/AEI/10.13039/501100011033/ and “ERDF A way of making Europe”.es
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherMDPIes
dc.relation.ispartofBuildings. 2025, V. 15, n. 3, p. 421es
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectArtificial intelligenceen
dc.subjectBuilding energy renovationen
dc.subjectDecarbonizationen
dc.subjectChatGPTen
dc.subjectRenovation measuresen
dc.subject.otherConstrucciónes
dc.subject.otherBuildingen
dc.subject.otherTecnologíaes
dc.subject.otherTechnologyen
dc.subject.otherInteligencia artificiales
dc.subject.otherArtificial intelligenceen
dc.titleCan ChatGPT AI Replace or Contribute to Experts’ Diagnosis for Renovation Measures Identification?en
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.3390/buildings15030421es
dc.identifier.doi10.3390/buildings15030421
dc.identifier.essn2075-5309
dc.journal.titleBuildingses
dc.volume.number15es
dc.issue.number3es
dc.page.initial421es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en este ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem