Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Ingeniería de Organización (GIO)
    • Artículos GIO
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Ingeniería de Organización (GIO)
    • Artículos GIO
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/3837

    Título
    Assessment of resistance spot welding quality based on ultrasonictesting and tree-based techniques
    Autor
    Martín, Óscar
    Pereda, María
    Santos Martín, José IgnacioAutoridad UBU Orcid
    Galán Ordax, José ManuelAutoridad UBU Orcid
    Publicado en
    Journal of Materials Processing Technology. 2014, V. 214, n. 11, p. 2478–2487
    Editorial
    Elsevier
    Fecha de publicación
    2014-11
    ISSN
    0924-0136
    DOI
    10.1016/j.jmatprotec.2014.05.021
    Resumen
    Classification and regression tree (CART) and random forest techniques were proposed as pattern recognition tools for classification of ultrasonic oscillograms of resistance spot welding (RSW) joints. The results showed that CART models produced an acceptable error rate with high interpretability. These features may be used to understand and control the decision processes, instruct other human operators, compare margins of safety or modify them depending on the criticality of the industrial process. Compared with CART trees, random forests reduced the error rate at the cost of decreasing decision interpretability. The use of the agreement of the forest was proposed as a measure to reduce the workload of human operators, who would only have to focus on the analysis of ultrasonic oscillograms that are difficult to interpret
    Palabras clave
    Resistance spot welding
    Non-destructive ultrasonic testing
    Random forest technique
    CART trees
    Classification
    Quality control
    Materia
    Gestión de empresas
    Industrial management
    URI
    http://hdl.handle.net/10259/3837
    Versión del editor
    http://dx.doi.org/10.1016/j.jmatprotec.2014.05.021
    Aparece en las colecciones
    • Artículos GIO
    Ficheros en este ítem
    Nombre:
    Martín-JMPT_2014.pdf
    Tamaño:
    1.217Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem