Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/3857

    Título
    WeVoS-ViSOM: an ensemble summarization algorithm for enhanced data visualization
    Autor
    Corchado, EmilioAutoridad UBU Orcid
    Baruque Zanón, BrunoAutoridad UBU Orcid
    Publicado en
    Neurocomputing. 2012, V. 75, n. 1, p. 171–184
    Editorial
    Elsevier
    Fecha de publicación
    2012-01
    ISSN
    0925-2312
    DOI
    10.1016/j.neucom.2011.01.027
    Resumen
    This study presents a novel version of the Visualization Induced Self-Organizing Map based on the application of a new fusion algorithm for summarizing the results of an ensemble of topology-preserving mapping models. The algorithm is referred to as Weighted Voting Superposition (WeVoS). Its main feature is the preservation of the topology of the map, in order to obtain the most accurate possible visualization of the data sets under study. To do so, a weighted voting process between the units of the maps in the ensemble takes place, in order to determine the characteristics of the units of the resulting map. Several different quality measures are applied to this novel neural architecture known as WeVoS-ViSOM and the results are analyzed, so as to present a thorough study of its capabilities. To complete the study, it has also been compared with the well-know SOM and its fusion version, with the WeVoS-SOM and with two other previously devised fusion Fusion by Euclidean Distance and Fusion by Voronoi Polygon Similarity—based on the analysis of the same quality measures in order to present a complete analysis of its capabilities. All three summarization methods were applied to three widely used data sets from the UCI Repository. A rigorous performance analysis clearly demonstrates that the novel fusion algorithm outperforms the other single and summarization methods in terms of data sets visualization
    Palabras clave
    Topology-preserving maps
    Unsupervised learning
    Data visualization
    Ensembles
    Summarization algorithm
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/3857
    Versión del editor
    http://dx.doi.org/10.1016/j.neucom.2011.01.027
    Aparece en las colecciones
    • Artículos GICAP
    Ficheros en este ítem
    Nombre:
    Corchado-N_2012.pdf
    Tamaño:
    1.198Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem