Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/3860

    Título
    Mutating network scans for the assessment of supervised classifier ensembles
    Autor
    Sedano, Javier
    González González, Silvia .
    Herrero Cosío, ÁlvaroAutoridad UBU Orcid
    Baruque Zanón, BrunoAutoridad UBU Orcid
    Corchado, EmilioAutoridad UBU Orcid
    Publicado en
    Logic Journal of the IGPL. 2012, V. 21, n. 4, p. 630-647
    Editorial
    Oxford University Press
    Fecha de publicación
    2012-09
    ISSN
    1367-0751
    DOI
    10.1093/jigpal/jzs037
    Resumen
    As it is well known, some Intrusion Detection Systems (IDSs) suffer from high rates of false positives and negatives. A mutation technique is proposed in this study to test and evaluate the performance of a full range of classifier ensembles for Network Intrusion Detection when trying to recognize new attacks. The novel technique applies mutant operators that randomly modify the features of the captured network packets to generate situations that could not otherwise be provided to IDSs while learning. A comprehensive comparison of supervised classifiers and their ensembles is performed to assess their generalization capability. It is based on the idea of confronting brand new network attacks obtained by means of the mutation technique. Finally, an example application of the proposed testing model is specially applied to the identification of network scans and related mutations
    Palabras clave
    Network intrusion detection
    IDS performance
    classifier ensembles
    machine learning
    zero-day attacks
    mutation
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/3860
    Versión del editor
    http://jigpal.oxfordjournals.org/content/early/2012/09/03/jigpal.jzs037
    Aparece en las colecciones
    • Artículos GICAP
    Ficheros en este ítem
    Nombre:
    Sedano-LJI_2012.pdf
    Tamaño:
    148.6Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem