Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/3875

    Título
    idMAS-SQL: Intrusion Detection Based on MAS to Detect and Block SQL injection through data mining
    Autor
    Pinzon, Cristian I.
    Paz, Juan F. de
    Herrero Cosío, ÁlvaroAutoridad UBU Orcid
    Corchado, EmilioAutoridad UBU Orcid
    Bajo, Javier
    Corchado, Juan M.
    Publicado en
    Information Sciences. 2013, V. 231, p. 15–31
    Editorial
    Elsevier
    Fecha de publicación
    2013-05
    ISSN
    0020-0255
    DOI
    10.1016/j.ins.2011.06.020
    Resumen
    This study presents a multiagent architecture aimed at detecting SQL injection attacks, which are one of the most prevalent threats for modern databases. The proposed architecture is based on a hierarchical and distributed strategy where the functionalities are structured on layers. SQL-injection attacks, one of the most dangerous attacks to online databases, are the focus of this research. The agents in each one of the layers are specialized in specific tasks, such as data gathering, data classification, and visualization. This study presents two key agents under a hybrid architecture: a classifier agent that incorporates a Case-Based Reasoning engine employing advanced algorithms in the reasoning cycle stages, and a visualizer agent that integrates several techniques to facilitate the visual analysis of suspicious queries. The former incorporates a new classification model based on a mixture of a neural network and a Support Vector Machine in order to classify SQL queries in a reliable way. The latter combines clustering and neural projection techniques to support the visual analysis and identification of target attacks. The proposed approach was tested in a real-traffic case study and its experimental results, which validate the performance of the proposed approach, are presented in this paper
    Palabras clave
    Intrusion Detection
    SQL injection attacks
    Data mining
    CBR
    SVM
    Neural networks
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/3875
    Versión del editor
    http://dx.doi.org/10.1016/j.ins.2011.06.020
    Aparece en las colecciones
    • Artículos GICAP
    Attribution-NonCommercial-NoDerivatives 4.0 International
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
    Ficheros en este ítem
    Nombre:
    Pinzon-IS_2013.pdf
    Tamaño:
    1.051Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem