Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Advanced Data Mining Research and Bioinformatics Learning (ADMIRABLE)
    • Artículos ADMIRABLE
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Advanced Data Mining Research and Bioinformatics Learning (ADMIRABLE)
    • Artículos ADMIRABLE
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/4351

    Título
    Restricted set classification: Who is there?
    Autor
    Kuncheva, Ludmila I. .
    Rodríguez Diez, Juan JoséAutoridad UBU Orcid
    Jackson, Aaron S. .
    Publicado en
    Pattern Recognition. 2017. V. 63. p. 158–170
    Editorial
    Elsevier
    Fecha de publicación
    2017-03
    ISSN
    0031-3203
    Resumen
    We consider a problem where a set X of N objects (instances) coming from c classes have to be classified simultaneously. A restriction is imposed on X in that the maximum possible number of objects from each class is known, hence we dubbed the problem who-is-there? We compare three approaches to this problem: (1) independent classification whereby each object is labelled in the class with the largest posterior probability; (2) a greedy approach which enforces the restriction; and (3) a theoretical approach which, in addition, maximises the likelihood of the label assignment, implemented through the Hungarian assignment algorithm. Our experimental study consists of two parts. The first part includes a custom-made chess data set where the pieces on the chess board must be recognised together from an image of the board. In the second part, we simulate the restricted set classification scenario using 96 datasets from a recently collated repository (University of Santiago de Compostela, USC). Our results show that the proposed approach (3) outperforms approaches (1) and (2).
    Palabras clave
    Pattern recognition
    Object classification
    Restricted set classification
    Compound decision problem
    Chess pieces classification
    Materia
    Computer science
    Informática
    URI
    http://hdl.handle.net/10259/4351
    Versión del editor
    http://dx.doi.org/10.1016/j.patcog.2016.08.028
    Aparece en las colecciones
    • Artículos ADMIRABLE
    Attribution-NonCommercial-NoDerivatives 4.0 International
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
    Ficheros en este ítem
    Nombre:
    Kuncheva-PR_2017.pdf
    Tamaño:
    4.821Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem