Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/4749
Título
Combining univariate approaches for ensemble change detection in multivariate data
Publicado en
Information Fusion. 2019, V. 45, p. 202-214
Editorial
Elsevier
Fecha de publicación
2019-01
ISSN
1566-2535
DOI
10.1016/j.inffus.2018.02.003
Resumen
Detecting change in multivariate data is a challenging problem, especially when class labels are not available. There is a large body of research on univariate change detection, notably in control charts developed originally for engineering applications. We evaluate univariate change detection approaches —including those in the MOA framework — built into ensembles where each member observes a feature in the input space of an unsupervised change detection problem. We present a comparison between the ensemble combinations and three established ‘pure’ multivariate approaches over 96 data sets, and a case study on the KDD Cup 1999 network intrusion detection dataset. We found that ensemble combination of univariate methods consistently outperformed multivariate methods on the four experimental metrics.
Materia
Computer science
Informática
Versión del editor
Aparece en las colecciones
Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International