Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/4927
Título
Thermodynamics of amide + ketone mixtures. 2. Volumetric, speed of sound and refractive index data for N,N-dimethylacetamide + 2-alkanone systems at several temperatures. Application of Flory's model to tertiary amide + n-alkanone systems
Autor
Publicado en
Journal of Molecular Liquids. 2017, V. 248, p. 286-301
Editorial
Elsevier
Fecha de publicación
2017-12
ISSN
0167-7322
Resumen
Data on density, ρ, speed of sound, c, and refractive index, nD, have been reported at (293–303.15) K for the N,N-dimethylacetamide (DMA) + CH3CO(CH2)u − 1CH3 (u = 1, 2, 3) systems, and at 298.15 K for the mixture with u = 5. These data have been used to compute excess molar volumes, VmE, excess adiabatic compressibilities, κSE, and excess speeds of sound cE. Negative VmE values indicate the existence of structural effects and interactions between unlike molecules. From molar excess enthalpies, HmE, available in the literature for N,N-dimethylformamide (DMF), or N-methylpyrrolidone (NMP) + n-alkanone systems, it is shown: (i) amide-ketone interactions are stronger in DMF systems than in those with NMP; (ii) they become weaker when u increases in mixtures with a given amide. Structural effects largely contribute toHmE and are more relevant in mixtures containing NMP. The application of the Flory's model reveals that the random mixing hypothesis is valid in large extent for DMF solutions, while NMP systems are characterized by rather strong orientational effects. From values of molar refraction and of the product PintVm (where Pint is the internal pressure and Vm the molar volume), it is concluded that dispersive interactions increase with u, or when DMF is replaced by DMA in mixtures with a fixed ketone.
Palabras clave
Amides
n-Alkanones
Thermophysical properties
Flory
Random mixing
Materia
Física
Physics
Versión del editor
Aparece en las colecciones
Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International