Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos Q&C
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos Q&C
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/5092

    Título
    Detection of cold chain breaks using partial least squares-class modelling based on biogenic amine profiles in tuna
    Autor
    Reguera Alonso, CeliaUBU authority Orcid
    Sanllorente Méndez, SilviaUBU authority Orcid
    Herrero Gutiérrez, AnaUBU authority Orcid
    Sarabia Peinador, Luis AntonioUBU authority Orcid
    Ortiz Fernández, Mª CruzUBU authority Orcid
    Publicado en
    Talanta. 2019, V. 202, p. 443-451
    Editorial
    Elsevier
    Fecha de publicación
    2019-09
    ISSN
    0039-9140
    DOI
    10.1016/j.talanta.2019.04.072
    Abstract
    The maintenance of the cold chain is essential to ensure foodstuff conformity and safety. However, gaps in the cold chain may be expected so designing analytical methods capable to detect cold chain breaks is a worthwhile issue. In this paper, the possibility of using the amount of nine biogenic amines (BAs) determined in Thunnus albacares by HPLC-FLD for detecting cold chain breaks is approached. Tuna is stored at 3 different temperature conditions for 8 storage periods. The evolution of the content of BAs is analyzed through parallel factor analysis (PARAFAC), in such a way that storage temperature, BAs and storage time profiles are estimated. PARAFAC has made it possible to observe two spoilage routes with different relative evolution of BAs. In addition, it has enabled to estimate the storage time, by considering the three storage temperatures, with errors of 0.5 and 1.0 days in fitting and in prediction, respectively. Furthermore, a class-modelling technique based on partial least squares is sequentially applied to decide, from the amount of BAs, if there has been a cold chain break. Firstly, samples stored at 25 °C are statistically discriminated from those kept at 4 °C and −18 °C; next, frozen samples are distinguished from those refrigerated. In the first case, the probabilities of false non-compliance and false compliance are almost zero, whereas in the second one, both probabilities are 10%. Globally, the results of this work have pointed out the feasibility of using the amount of BAs together with PLS-CM to decide if the cold chain has been maintained or not.
    Palabras clave
    Biogenic amines
    Cold chain
    Partial least squares - class modelling
    HPLC-FLD
    Parallel factor analysis
    Spoilage of tuna
    Materia
    Química analítica
    Chemistry, Analytic
    URI
    http://hdl.handle.net/10259/5092
    Versión del editor
    https://doi.org/10.1016/j.talanta.2019.04.072
    Collections
    • Artículos Q&C
    Attribution-NonCommercial-NoDerivatives 4.0 International
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
    Files in this item
    Nombre:
    Reguera-talanta_2019.pdf
    Tamaño:
    740.0Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record