Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Solar and Wind Feasibility Technologies (SWIFT)
    • Artículos SWIFT
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Solar and Wind Feasibility Technologies (SWIFT)
    • Artículos SWIFT
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/5768

    Título
    Feature selection for CIE standard sky classification
    Autor
    Granados López, DiegoAutoridad UBU Orcid
    Suárez García, AndrésAutoridad UBU
    Diez Mediavilla, MontserratAutoridad UBU Orcid
    Alonso Tristán, CristinaAutoridad UBU Orcid
    Publicado en
    Solar Energy. 2021, V. 218, p. 95-107
    Editorial
    Elsevier
    Fecha de publicación
    2021-04
    ISSN
    0038-092X
    DOI
    10.1016/j.solener.2021.02.039
    Resumen
    There are several compilations of sky classifications that refer to Meteorological Indices (MIs) (variables usually recorded at meteorological ground stations), due to the scarcity of sky scanner devices that can supply the experimental data needed to apply the CIE standard sky classification. The use of one rather than another MI is never justified, because there is no standardized criterion for their selection. In this study, forty-three MIs, traditionally used to define different sky conditions, are reviewed. Feature Selection (FS) is a key step in the design of a sky-classification algorithm using MIs as an alternative to data from sky scanners. Four procedural methods for FS -Pearson, Permutation Importance, Recursive Feature Elimination, and Boruta- are applied to an extensive data set of MIs that includes CIE standard sky classification data, which was used as a reference. The use of FS procedures significatively reduced the original set of MIs, permitting the construction of different classification trees with high performance for the sky classification. In the case of the Pearson FS method, the classification tree only used two MIs. The advantage of the Pearson FS method is that it functions independently from the machine-learning algorithm used latter for the sky classification.
    Palabras clave
    CIE standard sky classification
    Feature selection
    Meteorological indices
    Machine learning
    Materia
    Electrotecnia
    Electrical engineering
    URI
    http://hdl.handle.net/10259/5768
    Versión del editor
    https://doi.org/10.1016/j.solener.2021.02.039
    Aparece en las colecciones
    • Artículos SWIFT
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Granados-Se_2021.pdf
    Tamaño:
    4.609Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem