Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6176

    Título
    Porosity-based models for estimating the mechanical properties of self-compacting concrete with coarse and fine recycled concrete aggregate
    Autor
    Revilla Cuesta, Víctor
    Faleschini, Flora
    Zanini, Mariano A.
    Skaf Revenga, MartaUBU authority
    Ortega López, VanesaUBU authority
    Publicado en
    Journal of Building Engineering. 2021, V. 44, 103425
    Editorial
    Elsevier
    Fecha de publicación
    2021-12
    ISSN
    2352-7102
    DOI
    10.1016/j.jobe.2021.103425
    Abstract
    Predicting the mechanical properties of Self-Compacting Concrete (SCC) containing Recycled Concrete Aggregate (RCA) generally depends, in great part, on the RCA fraction in use. In this study, predictive equations for estimating SCC mechanical properties are developed through SCC porosity indices, so they are applicable to any RCA fraction and amount that may be used. A total of ten SCC mixes were prepared, nine of which containing different proportions of coarse and/or fine RCA (0%, 50% or 100% for both fractions), and the tenth mixed with 100% coarse and fine RCA, and RCA powder 0–1 mm. The following properties were evaluated: compressive strength, modulus of elasticity, splitting tensile strength, flexural strength, and effective porosity as measured with the capillary-water-absorption test. Negative effects on the above properties were recorded for increasing contents of both RCA fractions. The application of simple regression models yielded porosity-based estimations of the mechanical properties of the SCC with an accuracy margin of ±20%, regardless of the RCA fraction and amount. The results of the multiple regression models with compressive strength as a secondary predictive variable presented even greater robustness with accuracy margins of ±10% and almost no significant effect of accidental porosity variations on prediction accuracy. Furthermore, porosity predictions using the 24-h effective water also yielded accurate estimations of all the above mechanical properties. Finally, comparisons with the results of other studies validated the reliability of the models and their accuracy, especially the minimum expected values at a 95% confidence level, at all times lower than the experimental results.
    Palabras clave
    Recycled concrete aggregate
    Self-compacting concrete
    Mechanical behavior
    Effective capillary porosity
    Non-linear multiple regression
    Materia
    Ingeniería civil
    Civil engineering
    Construcción
    Construction
    URI
    http://hdl.handle.net/10259/6176
    Versión del editor
    https://doi.org/10.1016/j.jobe.2021.103425
    Collections
    • Untitled
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Files in this item
    Nombre:
    Revilla-jbe_2021.pdf
    Tamaño:
    18.45Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record