Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6218
Título
Modelling Photosynthetic Active Radiation (PAR) through meteorological indices under all sky conditions
Autor
Publicado en
Agricultural and Forest Meteorology. 2021, V. 310, 108627
Editorial
Elsevier
Fecha de publicación
2021-11
ISSN
0168-1923
DOI
10.1016/j.agrformet.2021.108627
Resumen
In this study, ten-minute meteorological data-sets recorded at Burgos, Spain, are used to develop models of Photosynthetic Active Radiation () following two different procedures: multilinear regression and Artificial Neural Networks. Ten Meteorological Indices (MIs) are chosen as inputs to the models: clearness index (), diffuse fraction (), direct fraction (), Perez's clear sky index (ɛ), brightness index (), cloud cover (), air temperature (), pressure (), solar azimuth cosine (), and horizontal global irradiation (). The experimental data are clustered according to the sky conditions, following the CIE standard sky classification. A previous feature selection procedure established the most adequate MIs for modelling in clear, partial and overcast sky conditions. was the common MI used by all models and for all sky conditions. Additional variables were also included: the geometrical parameter, , and three variables related to the sky conditions, , and Both modelling methods, multilinear regression and ANN, yielded very high determination coefficients () with very close results in the models for each of the different sky conditions. Slight improvements can be observed in the ANN models. The results underline the equivalence of multilinear regression models and ANN models of PAR following previous feature selection procedures.
Palabras clave
PAR
Modelling
CIE standard sky classification
Materia
Meteorología
Meteorology
Electrotecnia
Electrical engineering
Versión del editor
Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional