Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6243

    Título
    Evaluation of Functional Abilities in 0–6 Year Olds: An Analysis with the eEarlyCare Computer Application
    Autor
    Sáiz Manzanares, María ConsueloUBU authority Orcid
    Marticorena Sánchez, RaúlUBU authority Orcid
    Arnaiz González, ÁlvarUBU authority Orcid
    Publicado en
    International Journal of Environmental Research and Public Health. 2020, V. 17, n.9, 3315
    Editorial
    MDPI
    Fecha de publicación
    2020-05
    ISSN
    1660-4601
    DOI
    10.3390/ijerph17093315
    Abstract
    The application of Industry 4.0 to the field of Health Sciences facilitates precise diagnosis and therapy determination. In particular, its effectiveness has been proven in the development of personalized therapeutic intervention programs. The objectives of this study were (1) to develop a computer application that allows the recording of the observational assessment of users aged 0–6 years old with impairment in functional areas and (2) to assess the effectiveness of computer application. We worked with a sample of 22 users with different degrees of cognitive disability at ages 0–6. The eEarlyCare computer application was developed with the aim of allowing the recording of the results of an evaluation of functional abilities and the interpretation of the results by a comparison with "normal development". In addition, the Machine Learning techniques of supervised and unsupervised learning were applied. The most relevant functional areas were predicted. Furthermore, three clusters of functional development were found. These did not always correspond to the disability degree. These data were visualized with distance map techniques. The use of computer applications together with Machine Learning techniques was shown to facilitate accurate diagnosis and therapeutic intervention. Future studies will address research in other user cohorts and expand the functionality of their application to personalized therapeutic programs.
    Palabras clave
    Computer application
    Machine learning
    Early care
    Special needs
    Materia
    Psicología
    Psychology
    Terapéutica
    Therapeutics
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/6243
    Versión del editor
    https://doi.org/10.3390/ijerph17093315
    Collections
    • Artículos ADMIRABLE
    • Untitled
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Files in this item
    Nombre:
    Saiz-ijerph_2020.pdf
    Tamaño:
    5.082Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record