Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Data Analysis Techniques Applied in health environments sciences (DATAHES)
    • Artículos DATAHES
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Data Analysis Techniques Applied in health environments sciences (DATAHES)
    • Artículos DATAHES
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6244

    Título
    Monitoring Students at the University: Design and Application of a Moodle Plugin
    Autor
    Sáiz Manzanares, María ConsueloAutoridad UBU Orcid
    Marticorena Sánchez, RaúlAutoridad UBU Orcid
    García Osorio, CésarAutoridad UBU Orcid
    Publicado en
    Applied Sciences. 2020, V. 10, n. 10, 3469
    Editorial
    MDPI
    Fecha de publicación
    2021-05
    ISSN
    2076-3417
    DOI
    10.3390/app10103469
    Resumen
    Early detection of at-risk students is essential, especially in the university environment. Moreover, personalized learning has been shown to increase motivation and lower student dropout rates. At present, the average dropout rates among students following courses leading to the award of Spanish university degrees are around 18% and 42.8% for presential teaching and online courses, respectively. The objectives of this study are: (1) to design and to implement a Modular Object-Oriented Dynamic Learning Environment (Moodle) plugin, “eOrientation”, for the early detection of at-risk students; (2) to test the effectiveness of the “eOrientation” plugin on university students. We worked with 279 third-year students following health sciences degrees. A process for extracting information records was also implemented. In addition, a learning analytics module was developed, through which both supervised and unsupervised Machine Learning techniques can be applied. All these measures facilitated the personalized monitoring of the students and the easier detection of students at academic risk. The use of this tool could be of great importance to teachers and university governing teams, as it can assist the early detection of students at academic risk. Future studies will be aimed at testing the plugin using the Moodle environment on degree courses at other universities.
    Palabras clave
    Student guidance
    Personalized learning
    Machine Learning
    Moodle
    Plugin
    Materia
    Enseñanza superior
    Education, Higher
    Psicología
    Psychology
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/6244
    Versión del editor
    https://doi.org/10.3390/app10103469
    Aparece en las colecciones
    • Artículos ADMIRABLE
    • Artículos DATAHES
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Saiz-as_2020.pdf
    Tamaño:
    4.286Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem