Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Ingeniería de Organización (GIO)
    • Artículos GIO
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Ingeniería de Organización (GIO)
    • Artículos GIO
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6333

    Título
    Knowledge Transfer in Commercial Feature Extraction for the Retail Store Location Problem
    Autor
    Ahedo García, VirginiaAutoridad UBU Orcid
    Santos Martín, José IgnacioAutoridad UBU Orcid
    Galán Ordax, José ManuelAutoridad UBU Orcid
    Publicado en
    IEEE Access. 2021, V. 9, p. 132967-132979
    Editorial
    Institute of Electrical and Electronics Engineers (IEEE)
    Fecha de publicación
    2021-09
    ISSN
    2169-3536
    DOI
    10.1109/ACCESS.2021.3115712
    Resumen
    Location is the most important strategic decision in retailing. The location problem is markedly complex and multicriteria. One of the key factors to consider is the so-called balanced tenancy —i.e., the degree to which neighboring businesses complement each other. There are several network-based methodologies that formalize the notion of balanced tenancy by capturing the spatial interactions between different commercial sectors in cities. Some of these methodologies provide indices that have been successfully used as input features in location recommendation systems. However, from a predictive perspective, it is still unknown which of the indices provides best results. In this work, we analyze the performance of six of these indices on a set of nine Spanish cities. Our results show that the combined use of all of them in an ensemble model such as random forest significantly improves predictive accuracy. In addition, we explore the effect of knowledge transfer between cities from two different perspectives: 1) quantify how much the quality of solutions degrades when the balanced tenancy of a city is explored through the indices obtained from another city; 2) investigate the interest of network consensus approaches for knowledge transfer in retailing.
    Palabras clave
    Complex networks
    Feature extraction
    Recommendation systems
    Retail location problem
    Prediction
    Knowledge transfer
    Materia
    Comercio
    Commerce
    URI
    http://hdl.handle.net/10259/6333
    Versión del editor
    http://dx.doi.org/10.1109/ACCESS.2021.3115712
    Aparece en las colecciones
    • Artículos Organización de Empresas
    • Artículos GIO
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Ahedo-ia_2021.pdf
    Tamaño:
    7.429Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem