Mostrar el registro sencillo del ítem

dc.contributor.authorPáez, Teresa
dc.contributor.authorZhang, FeiFei
dc.contributor.authorLubian, Lara
dc.contributor.authorXi, Shibo
dc.contributor.authorWang, Qing
dc.contributor.authorPalma, Jesús
dc.contributor.authorMuñoz Torres, Miguel Ángel 
dc.contributor.authorSanz Díez, Roberto 
dc.contributor.authorVentosa Arbaizar, Edgar 
dc.date.accessioned2022-01-26T13:09:12Z
dc.date.available2022-01-26T13:09:12Z
dc.date.issued2022-01
dc.identifier.issn1614-6832
dc.identifier.urihttp://hdl.handle.net/10259/6361
dc.description.abstractEach battery technology possesses intrinsic advantages and disadvantages, e.g., nickel–metal hydride (MH) batteries offer relatively high specific energy and power as well as safety, making them the power of choice for hybrid electric vehicles, whereas aqueous organic flow batteries (AORFBs) offer sustainability, simple replacement of their active materials and independent scalability of energy and power, making them very attractive for stationary energy storage. Herein, a new battery technology that merges the above mentioned battery technologies through the use of redox-mediated reactions is proposed that intrinsically possesses the main features of each separate technology, e.g., high energy density of the solid active materials, easy recyclability, and independent scalability of energy and power. To achieve this, Ni(OH)2 and MHs are confined in the positive and negative reservoirs of an AORFB that employs alkaline solutions of potassium ferrocyanide and a mixture of 2,6-dihydroxyanthraquinone and 7,8-dihydroxyphenazine-2-sulfonic acid as catholyte and anolyte, respectively. An energy density of 128 Wh L–1 is achieved based on the capacity of the reservoirs leaving ample room for improvement up to the theoretical limit of 378 Wh L–1. This new battery technology opens up new market opportunities never before envisaged, for redox flow batteries, e.g., domestic energy storage and heavy-duty vehicle transportation.en
dc.description.sponsorshipSpanish Government through the Research Challenges Programme (Grant No. RTI2018-099228-A-I00). E.V. thanks the MINECO for the financial support (RYC2018-026086-I).en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherWileyen
dc.relation.ispartofAdvanced Energy Materials. 2022, V. 12, n. 1, 2102866en
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectElectrochemistryen
dc.subjectRedox flow batteriesen
dc.subjectRedox mediatorsen
dc.subjectRedox targetingen
dc.subjectSolid boostersen
dc.subject.otherQuímica analíticaes
dc.subject.otherChemistry, Analyticen
dc.titleThe Redox‐Mediated Nickel–Metal Hydride Flow Batteryen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1002/aenm.202102866es
dc.identifier.doi10.1002/aenm.202102866
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099228-A-I00/ES/BATERIAS INJECTABLES DE ELECTRODES SEMI-SOLIDOSes
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2018-026086-I
dc.identifier.essn1614-6840
dc.journal.titleAdvanced Energy Materialsen
dc.volume.number12es
dc.issue.number1es
dc.page.initial2102866es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en este ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem