Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6876
Título
Using Data Analytics & Machine Learning to Design Business Interruption Insurance Products for Rail Freight Operators
Autor
Publicado en
R-Evolucionando el transporte
Editorial
Universidad de Burgos. Servicio de Publicaciones e Imagen Institucional
Fecha de publicación
2021-07
ISBN
978-84-18465-12-3
DOI
10.36443/10259/6876
Descripción
Trabajo presentado en: R-Evolucionando el transporte, XIV Congreso de Ingeniería del Transporte (CIT 2021), realizado en modalidad online los días 6, 7 y 8 de julio de 2021, organizado por la Universidad de Burgos
Resumen
This paper discusses a case study in which publicly available data of a rail freight
transportation firm has been gathered, cleansed, and analyzed in order to: (i) describe the
data using statistical indicators and graphs; (ii) identify patterns regarding several Key
Performance Indicators; (iii) obtain forecasts on the future evolution of these indicators; and
(iv) use the identified patterns and the generated forecasts to propose customized insurance
products that reflect the current and future freight transportation activity. The paper
illustrates the different methodological steps required during the extraction and cleansing of
the data --which required the development of Python scripts--, the use of time series analysis
for obtaining reliable forecasts, and the use of machine learning models for designing
customized insurance coverage from the identified patterns and predicted values.
Palabras clave
Ferrocarriles
Railways
Materia
Ingeniería civil
Civil engineering
Transportes
Transportation
Versión del editor
Relacionado con
Aparece en las colecciones