Mostrar registro simples

dc.contributor.authorCardona, John F.
dc.contributor.authorCastaneda, Juliana
dc.contributor.authorMartins, Leandro do C.
dc.contributor.authorGandouz, Mariem
dc.contributor.authorJuan, Angel A.
dc.contributor.authorFranco, Guillermo
dc.date.accessioned2022-09-16T07:08:08Z
dc.date.available2022-09-16T07:08:08Z
dc.date.issued2021-07
dc.identifier.isbn978-84-18465-12-3
dc.identifier.urihttp://hdl.handle.net/10259/6876
dc.descriptionTrabajo presentado en: R-Evolucionando el transporte, XIV Congreso de Ingeniería del Transporte (CIT 2021), realizado en modalidad online los días 6, 7 y 8 de julio de 2021, organizado por la Universidad de Burgoses
dc.description.abstractThis paper discusses a case study in which publicly available data of a rail freight transportation firm has been gathered, cleansed, and analyzed in order to: (i) describe the data using statistical indicators and graphs; (ii) identify patterns regarding several Key Performance Indicators; (iii) obtain forecasts on the future evolution of these indicators; and (iv) use the identified patterns and the generated forecasts to propose customized insurance products that reflect the current and future freight transportation activity. The paper illustrates the different methodological steps required during the extraction and cleansing of the data --which required the development of Python scripts--, the use of time series analysis for obtaining reliable forecasts, and the use of machine learning models for designing customized insurance coverage from the identified patterns and predicted values.en
dc.description.sponsorshipThis study was collectively completed and supported by Guy Carpenter & Company, LLC, and the Universitat Oberta de Catalunya.en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherUniversidad de Burgos. Servicio de Publicaciones e Imagen Institucionales
dc.relation.ispartofR-Evolucionando el transportees
dc.relation.urihttp://hdl.handle.net/10259/6490
dc.subjectFerrocarrileses
dc.subjectRailwaysen
dc.subject.otherIngeniería civiles
dc.subject.otherCivil engineeringen
dc.subject.otherTransporteses
dc.subject.otherTransportationen
dc.titleUsing Data Analytics & Machine Learning to Design Business Interruption Insurance Products for Rail Freight Operatorsen
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.36443/9788418465123es
dc.identifier.doi10.36443/10259/6876
dc.page.initial487es
dc.page.final504es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples