Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Congresos y cursos UBU
    • Congreso de Ingeniería del Transporte CIT 2021 (14º. 2021. Burgos)
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Congresos y cursos UBU
    • Congreso de Ingeniería del Transporte CIT 2021 (14º. 2021. Burgos)
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6930

    Título
    Prediction of container filling for the selective waste collection in Algeciras (Spain)
    Autor
    Rodríguez López, Juana Carmen
    Moscoso López, José Antonio
    Ruiz Aguilar, Juan Jesús
    Rodríguez García, Inmaculada
    Alcántara Pérez, Jose Manuel
    Turias Domínguez, Ignacio J.
    Publicado en
    R-Evolucionando el transporte
    Editorial
    Universidad de Burgos. Servicio de Publicaciones e Imagen Institucional
    Fecha de publicación
    2021-07
    ISBN
    978-84-18465-12-3
    DOI
    10.36443/10259/6930
    Descripción
    Trabajo presentado en: R-Evolucionando el transporte, XIV Congreso de Ingeniería del Transporte (CIT 2021), realizado en modalidad online los días 6, 7 y 8 de julio de 2021, organizado por la Universidad de Burgos
    Resumen
    The aim of this study is to create an intelligent system that improves the efficiency of garbage collection, (cardboard waste, in this particular case). The number of cardboard containers to be collected each day will be determined based on a prediction made on the filled volume recorded in each container. It will be reflected in the cost and fuel savings, reducing emissions and contributing to environmental sustainability. These results will allow planning the sequence of waste removal, which means the optimal collection route considering restrictive parameters such as the type of truck, the location of containers, collection times by zones, and the availability of working staff. A filling prediction system is proposed based on real historical data provided by the current waste collection company in Algeciras (ARCGISA). To achieve this objective, an intelligent system is designed using predictive analytics and several methods based on machine learning, modelling the collection system as a classification model, comparing the results from a statistical point of view (using sensitivity, specificity, etc.). The results obtained with the best-tested method indicate an improvement average rate of 26% in sensitivity performance index and 67% in specificity performance index. Currently, waste collection is carried out without predictive analysis. The relevance of an efficient waste collection system is becoming increasingly important. Achieving optimal waste collection will result in improved service to citizens, cost savings for the administration, and significant environmental improvements.
    Palabras clave
    Modelización
    Modelling
    Simulación
    Simulation
    Transporte marítimo
    Maritime transport
    Materia
    Ingeniería civil
    Civil engineering
    Transportes
    Transportation
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/6930
    Versión del editor
    https://doi.org/10.36443/9788418465123
    Relacionado con
    http://hdl.handle.net/10259/6490
    Aparece en las colecciones
    • Congreso de Ingeniería del Transporte CIT 2021 (14º. 2021. Burgos)
    Ficheros en este ítem
    Nombre:
    Rodríguez_CIT2021_1393-1407.pdf
    Tamaño:
    1.368Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem