Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6930
Título
Prediction of container filling for the selective waste collection in Algeciras (Spain)
Autor
Publicado en
R-Evolucionando el transporte
Editorial
Universidad de Burgos. Servicio de Publicaciones e Imagen Institucional
Fecha de publicación
2021-07
ISBN
978-84-18465-12-3
DOI
10.36443/10259/6930
Descripción
Trabajo presentado en: R-Evolucionando el transporte, XIV Congreso de Ingeniería del Transporte (CIT 2021), realizado en modalidad online los días 6, 7 y 8 de julio de 2021, organizado por la Universidad de Burgos
Resumen
The aim of this study is to create an intelligent system that improves the efficiency of garbage
collection, (cardboard waste, in this particular case). The number of cardboard containers to
be collected each day will be determined based on a prediction made on the filled volume
recorded in each container. It will be reflected in the cost and fuel savings, reducing
emissions and contributing to environmental sustainability. These results will allow planning
the sequence of waste removal, which means the optimal collection route considering
restrictive parameters such as the type of truck, the location of containers, collection times
by zones, and the availability of working staff.
A filling prediction system is proposed based on real historical data provided by the current
waste collection company in Algeciras (ARCGISA). To achieve this objective, an intelligent
system is designed using predictive analytics and several methods based on machine
learning, modelling the collection system as a classification model, comparing the results
from a statistical point of view (using sensitivity, specificity, etc.). The results obtained with
the best-tested method indicate an improvement average rate of 26% in sensitivity
performance index and 67% in specificity performance index.
Currently, waste collection is carried out without predictive analysis. The relevance of an
efficient waste collection system is becoming increasingly important. Achieving optimal
waste collection will result in improved service to citizens, cost savings for the
administration, and significant environmental improvements.
Palabras clave
Modelización
Modelling
Simulación
Simulation
Transporte marítimo
Maritime transport
Materia
Ingeniería civil
Civil engineering
Transportes
Transportation
Informática
Computer science
Versión del editor
Relacionado con
Aparece en las colecciones