Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7261

    Título
    Neural Models for Imputation of Missing Ozone Data in Air-Quality Datasets
    Autor
    Arroyo Puente, ÁngelUBU authority Orcid
    Herrero Cosío, ÁlvaroUBU authority Orcid
    Tricio Gómez, VerónicaUBU authority
    Corchado, EmilioUBU authority Orcid
    Woźniak, Michał
    Publicado en
    Complexity. 2018, V. 2018, p. 1-14
    Editorial
    Hindawi
    Fecha de publicación
    2018
    ISSN
    1076-2787
    DOI
    10.1155/2018/7238015
    Abstract
    Ozone is one of the pollutants with most negative efects on human health and in general on the biosphere. Many data-acquisition networks collect data about ozone values in both urban and background areas. Usually, these data are incomplete or corrupt and the imputation of the missing values is a priority in order to obtain complete datasets, solving the uncertainty and vagueness of existing problems to manage complexity. In the present paper, multiple-regression techniques and Artifcial Neural Network models are applied to approximate the absent ozone values from fve explanatory variables containing air-quality information. To compare the diferent imputation methods, real-life data from six data-acquisition stations from the region of Castilla y Leon (Spain) are gathered ´ in diferent ways and then analyzed. Te results obtained in the estimation of the missing values by applying these techniques and models are compared, analyzing the possible causes of the given response.
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/7261
    Versión del editor
    https://doi.org/10.1155/2018/7238015
    Collections
    • Artículos Física Aplicada
    • Artículos GICAP
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Files in this item
    Nombre:
    Arroyo-complexity_2018.pdf
    Tamaño:
    2.478Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record